Sulfur-oxidizing bacteria (SOB) are versatile microorganisms known for their ability to oxidize various reduced sulfur compounds, namely, elemental sulfur (S), hydrogen sulfide (HS), tetrathionate (SO), and trithionate (SO) to sulfate (SO). In this study, out of twelve SOB isolates from rice rhizosphere, five were screened based on their sulfur oxidation potential, viz., SOB1, SOB2, SOB3, SOB4, and SOB5, and were identified as Ochrobactrum soli SOB1, Achromobacter xylosoxidans SOB2, Stenotrophomonas maltophilia SOB3, Brucella tritici SOB4, and Stenotrophomonas pavanii SOB5, respectively. All the isolates displayed chemolithotrophic nutritional mode by consuming thiosulfate and accumulating trithionate and tetrathionate in the growth medium which is ultimately oxidized to sulfate. The strains were authenticated with the production of thiosulfate oxidizing enzymes such as rhodanese and sulfite oxidase. Despite their tendency to oxidize reduced sulfur compounds, B. tritici SOB4 and S. pavanii SOB5 were also found to possess phosphate and zinc solubilization potential, acetic acid, and indole acetic acid (IAA) production and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. The presence of sulfanyl (R-SH) groups was noticed in the A. xylosoxidans SOB2. Elemental sulfur conversion into sulfate was noted in the S. maltophilia SOB3, and hydrogen sulfide conversion into sulfate was observed in the Ochromobacter soli SOB1. Sulfur oxidation potential coupled with beneficial properties of the isolates widen the knowledge on SOB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12223-023-01080-w | DOI Listing |
Bioresour Technol
December 2024
Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Engineering Research Centre of Chemical Pollution Control, Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China. Electronic address:
Anammox coupled partial S-driven autotrophic denitrification (PSAD) technology represents an innovative approach for removing nitrogen from wastewater. The research highlighted the crucial role of biofilm on sulfur particles in the nitrogen removal process. Further analysis revealed that sulfur-oxidizing bacteria (SOB) are primarily distributed in the inner layer of the biofilm, while anammox bacteria (AnAOB) are relatively evenly distributed in inner and outer layers, with Thiobacillus and Candidatus Brocadia being the dominant species, respectively.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain. Electronic address:
In this study, the performance of a pilot-scale biotrickling filter (BTF) for anoxic hydrogen sulfide (HS) removal from real biogas was evaluated over 226 days. The BTF, inoculated with activated sludge from a nearby wastewater treatment plant, operated in an industrial environment with raw biogas from an anaerobic digester fed with municipal solid waste. The operating strategy was based on controlling nitrate consumption by sulfur-oxidizing nitrate-reducing (SO-NR) bacteria.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Bundesanstalt für Materialforschung und Prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
Concrete, a versatile construction material, faces pervasive deterioration due to microbiologically influenced corrosion (MIC) in various applications, including sewer systems, marine engineering, and buildings. MIC is initiated by microbial activities such as involving sulfate-reducing bacteria (SRB), sulfur-oxidizing bacteria (SOB), etc., producing corrosive substances like sulfuric acid.
View Article and Find Full Text PDFWater Res
December 2024
Department of Environmental Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan-si, Gyeongbuk 38453, Republic of Korea. Electronic address:
The integration of elemental sulfur-based autotrophic denitrification with membrane bioreactor (MBR) technology offers a cost-effective solution for nitrate removal; however, stable operation demands efficient sulfur utilization and phosphorus management. This study explores sulfur consumption dynamics and the impacts of coagulant injection on denitrification efficiency. Sulfur consumption was closely correlated with nitrate removal rates, highlighting the critical role of stoichiometric sulfur availability for sustained denitrification.
View Article and Find Full Text PDFChemosphere
December 2024
Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China; Shenzhen Research Institute of Wuhan University of Technology, Shenzhen, 518000, Guangdong, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!