The application of waste oyster shell in agriculture is of extensive concern due to its benefits on improving yields and inhibiting cadmium (Cd) accumulation in edible parts of crops. However, the underlying mechanisms responsible for oyster shell powder (OSP) that decreases Cd accumulation in crops remain poorly understood. This study explored the effects of OSP on growth and Cd accumulation in rice via pot experiments and hydroponics. Pot experiments showed that the application of 1 g·kg OSP improved rice yields and decreased Cd concentrations in all tissues of rice, especially in grains, which was reduced by 43.5%. The pH was increased and the phytoavailability of Cd in soil was reduced by OSP supplementation. In addition, OSP also exhibited high dissolution of Ca, Fe, Zn, and Se. In hydroponics, OSP supply also suppressed Cd accumulation in rice and increased plant growth. Pretreatment with OSP inhibited the accumulation of Cd in the roots and shoots. Simultaneously, OSP reduced the content of Cd in the root cell sap, cell wall, and xylem sap, and downregulated the expression of OsNramp5, OsNramp1, OsIRT1, and OsHMA2. These findings suggested that the application of OSP could reduce Cd accumulation by inhibiting the expression of genes responsible for Cd absorption and xylem loading in rice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-28629-z | DOI Listing |
Water Res X
May 2025
Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120 Thailand.
This study rigorously evaluates the adsorption performance of the Cry-Ca-COS monolith for phosphate removal in a column operation mode. Characterization of the material both before and after exhaustion in a continuous flow system (column form) showed no difference compared to results from a batch system (tablet form). The XPS results indicated that the adsorption mechanism of phosphate on the Cry-Ca-COS column involved surface microprecipitation and ligand exchange (inner-sphere complexation).
View Article and Find Full Text PDFPathogens
December 2024
Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Republic of Korea.
White spot syndrome virus (WSSV) poses a major risk to shrimp aquaculture, and filter-feeding bivalves on shrimp farms may contribute to its persistence and transmission. This study investigated the bioaccumulation and vector potential of WSSV in Pacific oysters (), blue mussels (), and manila clams () cohabiting with WSSV-infected shrimp. Sixty individuals of each species (average shell lengths: 11.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Green Technology for Sustainability, Nanhua University, Chiayi 62248, Taiwan.
The construction industry contributes significantly to global carbon emissions, accounting for approximately 27% of total emissions. With the increasing demand for concrete, there is a growing need to explore alternative materials that can reduce environmental impact. This study investigates the potential of using oyster shell powder, a waste material, as a partial replacement for fine aggregates in concrete.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Orthopaedic Research Laboratory, Department of Orthopedic Surgery and Traumatology, Odense University Hospital & Department of Clinical Research, University of Southern Denmark, V18-812B-1, Etage 1, Bygning 45.4, Nyt Sund, SDU Campus 5230, Odense, Denmark.
There is an increasing demand for a suitable bone substitute to replace current clinical gold standard autografts or allografts. Majority of previous studies have focused on the early effects of substitutes on bone formation, while information on their long-term efficacies remains limited. This study investigated the efficacies of natural hydroxyapatite (nHA) derived from oyster shells and synthetic hydroxyapatite mixed with collagen (COL/HA) or chitosan (CS/HA) on bone regeneration and implant fixation in sheep.
View Article and Find Full Text PDFEnviron Technol
December 2024
School of Water Conservancy and Environment, University of Jinan, Jinan, People's Republic of China.
Anaerobic digestion is a sustainable technology for methane (CH) production from organic waste and wastewater. However, its performance is frequently hindered by excessive acidification in readily acidified substrates, such as starch wastewater. Oyster shell (OS), a natural alkaline material, effectively regulates pH and enhances CH production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!