The ability of headwater bed and suspended sediments to mitigate non-point agricultural phosphorus (P) loads to the lower Great Lakes is recognized, but the specific biogeochemical processes promoting sediment P retention or internal P release remain poorly understood. To elucidate these mechanisms, three headwater segments located within priority watersheds of Southern Ontario, Canada, were sampled through the growing season of 2018-2020. The study employed equilibrium P assays along with novel assessments of legacy watershed nutrients, nitrogen (N) concentrations, sediment redox, and microbial community composition. 20-year data revealed elevated total P (TP) and total Nitrogen (TN) at an inorganic fertilizer and manure fertilizer-impacted site, respectively. Overall, sampled sites acted as P sinks; however, agricultural sediments exhibited significantly lower buffering capacity compared to a reference forested watershed. Collection of fine suspended sediment (<63 µm) through time-integrated sampling showed the suspended load at the inorganic-fertilized site was saturated with P, indicating a greater potential for P release into surface waters compared to bed sediments. Through vertical microsensor profiling and DNA sequencing of the sediment microbial community, site-specific factors associated with a distinct P-source event were identified. These included rapid depletion of dissolved oxygen (DO) across the sediment water interface (SWI), as well as the presence of nitrate-reducing bacterial and ammonia-oxidizing archaeal (AOA) genera. This research provides valuable insights into the dynamics of P in headwaters, shedding light on P retention and release. Understanding these processes is crucial for effective management strategies aimed at mitigating P pollution to the lower Great Lakes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10509119 | PMC |
http://dx.doi.org/10.1007/s00267-023-01859-0 | DOI Listing |
Environ Sci Technol
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Peatlands store one-third of the world's soil organic carbon. Globally increased fires altered peat soil organic matter chemistry, yet the redox property and molecular dynamics of peat-dissolved organic matter (PDOM) during fires remain poorly characterized, limiting our understanding of postfire biogeochemical processes. Clarifying these dynamic changes is essential for effective peatland fire management.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Zoology and Animal Ecology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
Soil microorganisms are essential for maintaining ecosystem functionality, particularly through their role in the nitrogen (N) biogeochemical cycle. Thus, they also contribute to greenhouse gas emissions from soils. Microorganisms are sensitive indicators of soil health, as they respond rapidly to disturbances caused by factors like unsustainable agricultural practices or industrial activities, such as mining.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
Large diurnal temperature changes (ΔT) (or the diurnal temperature range (DTR)) in surface soils, ranging from 5°C to often greater than 20°C, are generally acknowledged to occur yet largely disregarded in studies that seek to understand how temperature affects microbially-mediated carbon and nitrogen cycling processes. The soil DTR is globally significant at depths of 30 cm or less, occurring from spring through summer in temperate biomes, during summer periods in the arctic, and year-round in the tropics. Thus, although temperature has long been considered an important factor in controlling microbial processes, our understanding of its effects remains incomplete when considering natural soil temperature cycles.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
Arbuscular mycorrhizal fungi (AMF) form extensive symbiotic relationships with plants, which are critical for plant-driven biogeochemical cycles and ecosystem functions. Grazing and mowing, which are common grassland utilization patterns globally, significantly alter plant community characteristics as well as soil nutrients and structure, thereby potentially influencing AMF communities. However, the effects of these grassland managements on AMF community structure and ecological processes remain unclear.
View Article and Find Full Text PDFWater Res
December 2024
State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
Dissolved oxygen (DO) is essential for the health of aquatic ecosystems, supporting biogeochemical cycles and the decomposition of organic matter. However, continuous untreated external inputs from illicit discharges or sewer overflows, coupled with inadequate ecological base flow, have led to widespread river deoxygenation and serious ecological crises. This study demonstrates that chlorinated wastewater treatment plant (WWTP) effluent can significantly enhance DO levels in downstream rivers, particularly in areas with high pollution loads or poor ecological base flow.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!