Self-Healing Hydrogel Membrane Provides a Strategy for the Steady Production of Clean Water from Organic Wastewater.

Membranes (Basel)

The Key Laboratory of Food Colloids and Biotechnology, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.

Published: July 2023

When the typical solar-driven hydrogel water evaporator treats the organic sewage, the organic pollutants will be accumulated in the evaporator and affect the evaporation performance. This issue is resolved by using silver-disulfide bonding to fix the silver oxide/silver (AgO/Ag) nanoparticles inside the polyacrylamide-acrylic acid hydrogel, resulting in the photocatalytic degradation of methyl orange and solar-driven water evaporation. AgO/Ag nanoparticles are a solar-thermal conversion material used to replace the traditional carbon material. On the one hand, the heterojunction structure of AgO/Ag enhances the separation ability of the photogenerated carriers, thereby increasing the photocatalytic efficiency. On the other hand, the surface of the nanoparticles is grafted with N, N'-bis(acryloyl) cystamine and becomes the crosslinking agent which is fixed in the hydrogel. Meanwhile, the inverted pyramid structure can be built at the surface of the hydrogel by soft imprinting technology. This kind of structure has excellent light trapping performance, which can increase the efficiency of AgO/Ag photocatalysis. Furthermore, the dynamic reversible coordination effect between Fe and carboxyl realizes the self-healing capability of the hydrogel. Here are the properties of hydrogel: the fracture stress is 0.35 MPa, the fracture elongation is 1320%, the evaporation rate is 1.2 kg·m·h, and the rate of the photocatalytic degradation of methyl orange is 96% in 3 h. This self-healing hydrogel membrane provides a strategy to steadily get clean water from organic sewage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383306PMC
http://dx.doi.org/10.3390/membranes13070648DOI Listing

Publication Analysis

Top Keywords

self-healing hydrogel
8
hydrogel membrane
8
membrane strategy
8
clean water
8
water organic
8
organic sewage
8
ago/ag nanoparticles
8
photocatalytic degradation
8
degradation methyl
8
methyl orange
8

Similar Publications

Cartilage repair remains a critical challenge in orthopaedic medicine due to the tissue's limited self-healing ability, contributing to degenerative joint conditions such as osteoarthritis (OA). In response, regenerative medicine has developed advanced therapeutic strategies, including cell-based therapies, gene editing, and bioengineered scaffolds, to promote cartilage regeneration and restore joint function. This narrative review aims to explore the latest developments in cartilage repair techniques, focusing on mesenchymal stem cell (MSC) therapy, gene-based interventions, and biomaterial innovations.

View Article and Find Full Text PDF

Lutein-loaded multifunctional hydrogel dressing based on carboxymethyl chitosan for chronic wound healing.

Int J Biol Macromol

January 2025

National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Oxidative stress is a major contributor to the difficulties in chronic wound healing. Although antioxidant hydrogels have been developed, they are still insufficient for addressing the entire chronic wound healing process. In this study, a lutein-loaded multifunctional hydrogel dressing (Lutein/CMC/PVP/TA, Lutein/CPT) with synergistic antioxidation properties was developed by hydrogen bonding and electrostatic crosslinking of tannic acid (TA) with carboxymethyl chitosan (CMC) and polyvinylpyrrolidone (PVP).

View Article and Find Full Text PDF

Salt-welding strategy for the design of repairable impact-resistant and wear-resistant hydrogels.

Sci Adv

January 2025

School of Materials Science & Chemical Engineering, Ministry of Education Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China.

Self-healing hydrogels can autonomously repair damage, enhancing their performance stability and broadening their applications as soft devices. Although the incorporation of dynamic interactions enhances self-healing capabilities, it simultaneously weakens the hydrogels' strength. External stimuli such as heating, while accelerating the healing process, may also lead to dehydration.

View Article and Find Full Text PDF

Recent Progress in Self-Healing Triboelectric Nanogenerators for Artificial Skins.

Biosensors (Basel)

January 2025

Henan Energy Conversion and Storage Materials Engineering Center, College of Science, Henan University of Engineering, Zhengzhou 451191, China.

Self-healing triboelectric nanogenerators (TENGs), which incorporate self-healing materials capable of recovering their structural and functional properties after damage, are transforming the field of artificial skin by effectively addressing challenges associated with mechanical damage and functional degradation. This review explores the latest advancements in self-healing TENGs, emphasizing material innovations, structural designs, and practical applications. Key materials include dynamic covalent polymers, supramolecular elastomers, and ion-conductive hydrogels, which provide rapid damage recovery, superior mechanical strength, and stable electrical performance.

View Article and Find Full Text PDF

Peptides can be designed to self-assemble into predefined supramolecular nanostructures, which are then employed as biomaterials in a range of applications, including tissue engineering, drug delivery, and vaccination. However, current self-assembling peptide (SAP) hydrogels exhibit inadequate self-healing capacities and necessitate the use of sophisticated printing apparatus, rendering them unsuitable for 3D printing under physiological conditions. Here, we report a precisely designed charged peptide, Z5, with the object of investigating the impact of electrostatic interactions on the self-assembly and the rheological properties of the resulting hydrogels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!