This study set out to evaluate the wound healing properties of brittle star extracts in vitro and in vivo. Due to the great arm regeneration potential of the brittle star, , the present study aimed to evaluate the wound healing effect of hydroalcoholic extracts of brittle star undergoing arm regeneration in wound healing models. The brittle star samples were collected from Nayband Bay, Bushehr, Iran. After wound induction in the arm of brittle stars, hydroalcoholic extracts relating to different times of arm regeneration were prepared. The GC-MS analysis, in vitro MTT cell viability and cell migration, Western blot, and computational analysis tests were performed. Based on the in vitro findings, two BSEs were chosen for in vivo testing. Macroscopic, histopathological and biochemical evaluations were performed after treatments. The results showed positive proliferative effects of BSEs. Specifically, forty-two compounds were detected in all groups of BSEs using GC-MS analysis, and their biological activities were assessed. The MTT assay showed that the 14 d BSE had a higher proliferative effect on HFF cells than 7 d BSE. The cell migration assay showed that the wound area in 7 d and 14 d BSEs was significantly lower than in the control group. Western blot analysis demonstrated an increase in the expression of proliferation-related proteins. Upon the computational analysis, a strong affinity of some compounds with proteins was observed. The in vivo analysis showed that the evaluation of wound changes and the percentage of wound healing in cell migration assay in the 7 d BSE group was better than in the other groups. Histopathological scores of the 7 d BSE and 14 d BSE groups were significantly higher than in the other groups. In conclusion, the hydroalcoholic extract of undergoing arm regeneration after 7 and 14 days promoted the wound healing process in the cell and rat skin wound healing model due to their proliferative and migratory biological activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10381614PMC
http://dx.doi.org/10.3390/md21070381DOI Listing

Publication Analysis

Top Keywords

wound healing
28
brittle star
20
arm regeneration
20
undergoing arm
12
cell migration
12
wound
10
star undergoing
8
evaluate wound
8
hydroalcoholic extracts
8
gc-ms analysis
8

Similar Publications

Engineered Au@MOFs silk fibroin-based hydrogel phototherapy platform for enhanced wound healing performance.

Int J Biol Macromol

January 2025

School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China. Electronic address:

Wound bacterial infections not only impede the healing process but can also give rise to a range of serious complications, thereby posing a substantial risk to human health. Developing effective wound dressings incorporating phototherapy functionalities, specifically photothermal therapy (PTT) and photodynamic therapy (PDT), remains a critical area of research in modern wound care. Existing PTT-PDT systems often suffer from challenges such as nanoparticle aggregation and inefficient reactive oxygen species (ROS) generation, which are essential for therapeutic efficacy.

View Article and Find Full Text PDF

In situ growth of ZIF-8 nanoparticles on pure chitosan nanofibrous membranes for efficient antimicrobial wound dressings.

Int J Biol Macromol

January 2025

Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China. Electronic address:

Bacterial infections and excessive accumulation of wound exudates remain the main obstacles and clinical challenges to the healing of chronic cutaneous wounds. Conventional dressings are commonly used medical materials for acute wound care, but they do not possess the bacterial infection resistance required for chronic wound treatment. Herein, we prepared pure chitosan nanofibrous membranes (C) by electrospinning with poly(ethylene oxide) (PEO) as a sacrificial additive and then loaded with zinc-based metal-organic framework (MOF) as a novel antimicrobial wound dressing.

View Article and Find Full Text PDF

Chronic NaAsO exposure promotes migration and invasion of prostate cancer cells by Akt/GSK-3β/β-catenin/TCF4 axis-mediated epithelial-mesenchymal transition.

Ecotoxicol Environ Saf

January 2025

Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Department of Urology, Chaohu Hospital of Anhui Medical University, Chaohu 238000, China. Electronic address:

Inorganic arsenic is a Class I human Carcinogen. However, the role of chronic inorganic arsenic exposure on prostate cancer metastasis still unclear. This study aimed to investigate the effects and mechanism of chronic NaAsO exposure on migration and invasion of prostate cancer cells.

View Article and Find Full Text PDF

Background: Acne is an inflammatory skin disease afflicting the majority of the world's population at some point in their lifetime, and is seen to be chronic in about 50% of cases. Acne leads to significant social withdrawal, depression, and disfiguring scars in many cases. Available treatments are characterized by high rates of relapse, dangerous side effects, and social stigma, which often leads to poor patient compliance and treatment failure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!