Fungal Biodegradation of Polyurethanes.

J Fungi (Basel)

Laboratoire ERRMECe, Cergy Paris University, 1 Rue Descartes, 95000 Neuville-sur-Oise, France.

Published: July 2023

Polyurethanes (PURs) are versatile polymers used in a wide variety of fields, such as the medical, automotive, textile, thermal insulation, and coating industries as well as many everyday objects. Many PURs have applications that require a long service life, sometimes with exposure to aggressive conditions. They can undergo different types of physicochemical and biological degradation, but they are not compostable, and many of them constitute persistent waste in the environment. Although both bacteria and fungi can be involved in the degradation of PURs, fungi are often the main biodegradation agents. The chemical structure of PURs determines their degree of biodegradation. Fungal biodegradation of PURs is linked to the production of enzymes, mainly esterases and proteases, alongside laccases, peroxidases, and tyrosinases, which can modify the structure of polyurethane compounds by forming carbonyl groups. The experimental analysis of the biodegradation of PUR can be carried out by bringing the polymer into contact with a mold in pure culture or with a microbial consortium. Then, global measurements can be taken, such as weight loss, tensile tests, or the ability of microorganisms to grow in the presence of PUR as the sole carbon source. The analysis of the chemical structure of the polymer and its degradation products after fungal growth can confirm biodegradation and specify the mechanism. The main avenues of future research are directed towards the development of fully biodegradable PURs and, on the contrary, towards the development of PURs that are more resistant to degradation phenomena, in particular biodegradation, for applications where the material is in contact with living organisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10381151PMC
http://dx.doi.org/10.3390/jof9070760DOI Listing

Publication Analysis

Top Keywords

fungal biodegradation
8
chemical structure
8
purs
7
biodegradation
6
biodegradation polyurethanes
4
polyurethanes polyurethanes
4
polyurethanes purs
4
purs versatile
4
versatile polymers
4
polymers wide
4

Similar Publications

Hepatic steatosis/non-alcoholic fatty liver disease is a major public health delinquent caused by the excess deposition of lipid into lipid droplets (LDs) as well as metabolic dysregulation. Hepatic cells buildup with more fat molecules when a person takes high fat diet that is excessive than the body can handle. At present, millions of people in the world are affected by this problem.

View Article and Find Full Text PDF

Background & Aims: Hepatic steatosis, characterized by lipid accumulation in hepatocytes, is a key diagnostic feature in patients with chronic hepatitis C virus (HCV) infection. This study aimed to clarify the involvement of phospholipid metabolic pathways in the pathogenesis of HCV-induced steatosis.

Methods: The expression and distribution of lipid species in the livers of human liver chimeric mice were analyzed using imaging mass spectrometry.

View Article and Find Full Text PDF

Introduction: Cystic echinococcosis (CE), a chronic disabling parasitic zoonosis, poses a great threat to public health and livestock production and causes huge economic losses globally. The commercial Quil-A-adjuvanted Eg95 vaccine was empirically effective for CE control; however, it is expensive and has side effects and insufficient immunity.

Purpose: This study aimed to employ a novel adjuvant consisting of a delivery system and an immune potentiator and assess its adjuvanticity to Eg95 antigen, thereby developing a safe and cost-effective novel vaccine against the disease.

View Article and Find Full Text PDF

Correlation of Sensitization with Mucus Plugging in COPD.

Int J Chron Obstruct Pulmon Dis

January 2025

Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, People's Republic of China.

Background: Both sensitization and mucus plugs are associated with poor clinical outcomes in COPD. However, little is known about the association between hypersensitivity and mucus plugging in patients with COPD.

Methods: We retrospectively enrolled COPD patients who had visited Peking University Third Hospital and received measurement of the specific IgE ( sIgE) from Oct 1, 2018 to Sep 30, 2023.

View Article and Find Full Text PDF

Bacterial infections can substantially impact host metabolic health as a result of the direct and indirect demands of sustaining an immune response and of nutrient piracy by the pathogen itself. Drosophila melanogaster and other insects that survive a sublethal bacterial infection often carry substantial pathogen burdens for the remainder of life. In this study, we asked whether these chronic infections exact metabolic costs for the host, and how these costs scale with the severity of chronic infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!