Particulate matter (PM) pollution is a significant environmental and public health issue globally. Exposure to high levels of PM, especially fine particles, can have severe health consequences. These particles can come from a variety of sources, including natural events like dust storms and wildfires, as well as human activities such as industrial processes and transportation. Although an extensive development in air filtration techniques has been made in the past few years, fine particulate matter still poses a serios and dangerous threat to human health and to our environment. Conventional air filters are fabricated from non-biodegradable and non-ecofriendly materials which can cause further environmental pollution as a result of their excessive use. Nanostructured biopolymer aerogels have shown great promise in the field of particulate matter removal. Their unique properties, renewable nature, and potential for customization make them attractive materials for air pollution control. In the present review, we discuss the meaning, properties, and advantages of nanostructured aerogels and their potential in particulate matter removal. Particulate matter pollution, types and sources of particulate matter, health effect, environmental effect, and the challenges facing scientists in particulate matter removal are also discussed in the present review. Finally, we present the most recent advances in using nanostructured bioaerogels in the removal of different types of particulate matter and discuss the challenges that we face in these applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10379271 | PMC |
http://dx.doi.org/10.3390/gels9070575 | DOI Listing |
Curr Environ Health Rep
January 2025
Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, 104 Mason Farm Rd., Chapel Hill, NC, 27514, USA.
Purpose Of Review: A major contributor to household air pollution (HAP) in sub-Saharan Africa (SSA) is unclean cooking fuel. Improved cookstove technology (ICT) interventions have been promoted as a solution, but their impacts on health are unclear. Our aim is to conduct a systematic review to explore the impacts of ICT interventions on health outcomes in SSA.
View Article and Find Full Text PDFInt Arch Occup Environ Health
January 2025
Xining Centre for Disease Control and Prevention, Xining, Qinghai, 810000, China.
Background: The unique characteristics of air pollution in high-altitude regions may significantly influence the transmission and incidence of influenza. However, current research on this phenomenon is limited, and further investigation is urgently needed.
Methods: This study collected influenza outpatient data from Qinghai Province between January 1, 2016, and December 31, 2021.
Environ Sci Technol
January 2025
Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States.
Deployment of large numbers of low capital cost sensors to increase the spatial density of air quality measurements enables applications that build on mapping air at neighborhood scales. Effective deployment requires not only low capital costs for observations but also a simultaneous reduction in labor costs. The Berkeley Environmental Air Quality and CO Network (BEACON) is a sensor network measuring O, CO, NO, and NO, particulate matter (PM), and CO at dozens of locations in cities where it is deployed.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China.
Electrospun fibrous materials with fine fibers and small pores are fundamental for particulate matter (PM) filtration, addressing its harmful environmental and health impacts. However, the existing electrospun fibers are still limited to their sub-micron diameters and unstable surface electrostatic effect, leading to deteriorated filtration performance after prolonged storage or wetting. Herein, the study creates nanofibrous membranes with long-time stable electrostatics by electret-enhanced electrospinning.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Environmental Science, Stockholm University, Stockholm 10691, Sweden.
The complex and dynamic nature of airborne fine particulate matter (PM) has hindered understanding of its chemical composition, sources, and toxic effects. In the first steps of a larger study, here, we aimed to elucidate relationships between source regions, ambient conditions, and the chemical composition in water extracts of PM samples ( = 85) collected over 16 months at an observatory in the Yellow Sea. In each extract, we quantified elements and major ions and profiled the complex mixtures of organic compounds by nontarget mass spectrometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!