The use of polysaccharides with good film-forming properties in food packaging systems is a promising area of research. Xanthan gum (XG), an extracellular polysaccharide, has many industrial uses, including as a common food additive (E415). It is an effective thickening agent, emulsifier, and stabilizer that prevents ingredients from separating. Nevertheless, XG-based polymer films have some disadvantages, such as poor mechanical properties and high hydrophilic features, which reduce their stability when exposed to moisture and create difficulties in processing and handling. Thus, the objective of this work was to stabilize a XG matrix by cross-linking it with glycerol diglycidyl ether, 1,4-butanediol diglycidyl ether, or epichlorohydrin below the freezing point of the reaction mixture. Cryogelation is an ecological, friendly, and versatile method of preparing biomaterials with improved physicochemical properties. Using this technique, XG-based cryogels were successfully prepared in the form of microspheres, monoliths, and films. The XG-based cryogels were characterized by FTIR, SEM, AFM, swelling kinetics, and compressive tests. A heterogeneous morphology with interconnected pores, with an average pore size depending on both the nature of the cross-linker and the cross-linking ratio, was found. The use of a larger amount of cross-linker led to both a much more compact structure of the pore walls and to a significant decrease in the average pore size. The uniaxial compression tests indicated that the XG-based cryogels cross-linked with 1,4-butanediol diglycidyl ether exhibited the best elasticity, sustaining maximum deformations of 97.67%, 90.10%, and 81.80%, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378831 | PMC |
http://dx.doi.org/10.3390/gels9070528 | DOI Listing |
Polymers (Basel)
December 2024
Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang'an University, South 2nd Ring Road Middle Section, Xi'an 710064, China.
Studying the mechanisms and effects of rejuvenators on SBS-modified bitumen is crucial for repairing degraded SBS and recycling aged SBS-modified bitumen (ASMB), thereby contributing to the sustainable development of bitumen pavements. This research examines the roles of mono-epoxy Alkyl (C12-C14) glycidyl ether (AGE) and di-epoxy 1,6-Hexanediol diglycidyl ether (HDE) under the catalysis of N,N-dimethyl benzyl amine (BDMA) in repairing degraded SBS chains. Aromatic oil (ORSMB)-, AGE-aromatic oil (ARSMB)-, and HDE-aromatic oil (HRSMB)-rejuvenated bitumen are analyzed for their chemical structures, physical properties, and rheological properties.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd. 300044 Hsinchu City, Taiwan, ROC. Electronic address:
This study presents a novel approach for the controlled synthesis and real-time characterization of crosslinked hyaluronic acid (HA) hydrogels utilizing a microfluidic platform coupled with hyphenated electrospray-differential mobility analysis (ES-DMA). By precisely controlling key synthesis parameters within the microfluidic environment, including pH, temperature, reaction time, and the molar ratio of HA to crosslinker (1,4-butanediol diglycidyl ether, BDDE), we successfully synthesized HA hydrogels with tailored size and properties. The integrated ES-DMA system provides rapid, in-line analysis of hydrogel particle size and distribution, enabling real-time monitoring and optimization of the synthesis process.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea. Electronic address:
Dermal fillers comprising injectable hyaluronic acid (HA) are widely used for soft tissue augmentation, often using crosslinking agents such as 1,4-butanediol diglycidyl ether (BDDE) or poly (ethylene glycol) diglycidyl ether (PEGDE). Here, we assessed the physical properties, toxicity, and inflammatory reactions of HA fillers crosslinked with either BDDE (HA-BDDE filler) or PEGDE (HA-PEGDE filler) in in vitro and in vivo investigations. The HA-PEGDE filler exhibited higher G', tan δ, G*, and complex viscosity values compared to the HA-BDDE filler, while maintaining similar cohesivity.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
A series of novel amphiphilic alternating CPEG copolymers were synthesized through an amine-epoxy click reaction comprising aliphatic amine and polyethylene glycol diglycidyl ether (PEGDE). These polymers were characterized in detail via nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) to confirm the successful synthesis. Due to their amphiphilic structure, these polymers display thermoresponsiveness, with tunable cloud points (Tcps) that are adjustable from 20.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Discipline of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland.
With no effective treatments for functional recovery after injury, spinal cord injury (SCI) remains one of the unresolved healthcare challenges. Human induced pluripotent stem cell (hiPSC) transplantation is a versatile patient-specific regenerative approach for functional recovery after SCI. Injectable electroconductive hydrogel (ECH) can further enhance the cell transplantation efficacy through a minimally invasive manner as well as recapitulate the native bioelectrical microenvironment of neural tissue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!