Multiple myeloma (MM) is characterized by multiple relapse and, despite the introduction of novel therapies, the disease becomes ultimately drug-resistant. The tumor microenvironment (TME) within the bone marrow niche includes dendritic cells, T-cytotoxic, T-helper, reactive B-lymphoid cells and macrophages, with a complex cross-talk between these cells and the MM tumor cells. Tumor-associated macrophages (TAM) have an important role in the MM pathogenesis, since they could promote plasma cells proliferation and angiogenesis, further supporting MM immune evasion and progression. TAM are polarized towards M1 (classically activated, antitumor activity) and M2 (alternatively activated, pro-tumor activity) subtypes. Many studies demonstrated a correlation between TAM, disease progression, drug-resistance and reduced survival in lymphoproliferative neoplasms, including MM. MM plasma cells in vitro could favor an M2 TAM polarization. Moreover, a possible correlation between the pro-tumor effect of M2 TAM and a reduced sensitivity to proteasome inhibitors and immunomodulatory drugs was hypothesized. Several clinical studies confirmed CD68/CD163 double-positive M2 TAM were associated with increased microvessel density, chemoresistance and reduced survival, independently of the MM stage. This review provided an overview of the biology and clinical relevance of TAM in MM, as well as a comprehensive evaluation of a potential TAM-targeted immunotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378698 | PMC |
http://dx.doi.org/10.3390/curroncol30070455 | DOI Listing |
Cancer Med
January 2025
Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China.
Purpose: Recent research (Li et al. 2021) suggests an upregulated expression and activation of H1 receptors on macrophages in the tumor microenvironment, and concomitant H1-antihistamine use is associated with improved overall survival in patients with lung and skin cancers receiving immunotherapy. Therefore, we retrospectively evaluated the impacts of H1-antihistamine use in cancer patients during immunotherapy.
View Article and Find Full Text PDFViral Immunol
January 2025
Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes, Mexico.
Respiratory syncytial virus (RSV) is one of the most important etiologies of acute respiratory infections that cause bronchiolitis in children under 5 years of age. Treatments are expensive, no vaccine is available, and this is an important cause of hospitalization. Costimulatory molecules have been reported to be good inducers of antiviral type 1 immune response.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
Sonodynamic therapy (SDT), which is non-invasive and controllable has the potential to treat triple-negative breast cancer (TNBC). However, the hypoxia and immunosuppressive tumor microenvironment (TME) often block the production of reactive oxygen species and the induction of SDT-activated immunogenic cell death, thus limiting the activation of adaptive immune responses. To alleviate these challenges, we proposed the development of a multifunctional biomimetic nanoplatform (mTSeIR), which was designed with diselenide-conjugated sonosensitizers and tirapazamine (TPZ), encapsulated within M1 macrophage membrane.
View Article and Find Full Text PDFBiol Direct
January 2025
School of Medicine, South China University of Technology, Guangzhou, 510006, China.
Background: Pancreatic cancer is characterized by a complex tumor microenvironment that hinders effective immunotherapy. Identifying key factors that regulate the immunosuppressive landscape is crucial for improving treatment strategies.
Methods: We constructed a prognostic and risk assessment model for pancreatic cancer using 101 machine learning algorithms, identifying OSBPL3 as a key gene associated with disease progression and prognosis.
Sci Rep
January 2025
Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060, Hubei, People's Republic of China.
The current mortality rates for breast cancer underscore the need for better prognostic tools; moreover, LIM and calponin homology domain 1 (LIMCH1), which is a protein with dual roles in cancer, is a promising candidate for investigation. This study employed an integrative approach combining bioinformatics analysis of The Cancer Genome Atlas (TCGA) cohort and clinical immunohistochemistry (IHC) cohort data. We analysed LIMCH1 expression patterns, its associations with clinicopathological features and prognosis, and its impact on the tumour immune microenvironment (TIME).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!