AI Article Synopsis

  • Mathematical and computer simulations of learning in neural networks focus on synaptic connections (weights), which are thought to be key for learning and memory through synaptic plasticity.
  • The study explores a model of structural plasticity that involves adaptive changes in synaptic connections based on neural activity, enhancing the effects of spike-timing-dependent plasticity (STDP) in response to external stimulation.
  • The research introduces a measure for the stability and reproducibility of network dynamics over time, using a vector field approach to analyze patterns in functional and anatomical connectomes.

Article Abstract

Mathematical and computer simulation of learning in living neural networks have typically focused on changes in the efficiency of synaptic connections represented by synaptic weights in the models. Synaptic plasticity is believed to be the cellular basis for learning and memory. In spiking neural networks composed of dynamical spiking units, a biologically relevant learning rule is based on the so-called spike-timing-dependent plasticity or STDP. However, experimental data suggest that synaptic plasticity is only a part of brain circuit plasticity, which also includes homeostatic and structural plasticity. A model of structural plasticity proposed in this study is based on the activity-dependent appearance and disappearance of synaptic connections. The results of the research indicate that such adaptive rewiring enables the consolidation of the effects of STDP in response to a local external stimulation of a neural network. Subsequently, a vector field approach is used to demonstrate the successive "recording" of spike paths in both functional connectome and synaptic connectome, and finally in the anatomical connectome of the network. Moreover, the findings suggest that the adaptive rewiring could stabilize network dynamics over time in the context of activity patterns' reproducibility. A universal measure of such reproducibility introduced in this article is based on similarity between time-consequent patterns of the special vector fields characterizing both functional and anatomical connectomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10807410PMC
http://dx.doi.org/10.3390/biomimetics8030320DOI Listing

Publication Analysis

Top Keywords

neural networks
12
spiking neural
8
synaptic connections
8
synaptic plasticity
8
structural plasticity
8
adaptive rewiring
8
synaptic
6
plasticity
6
stdp-driven rewiring
4
rewiring spiking
4

Similar Publications

Weighted Echo State Graph Neural Networks Based on Robust and Epitaxial Film Memristors.

Adv Sci (Weinh)

January 2025

College of Physics Science & Technology, School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, Hebei University, Baoding, 071002, China.

Hardware system customized toward the demands of graph neural network learning would promote efficiency and strong temporal processing for graph-structured data. However, most amorphous/polycrystalline oxides-based memristors commonly have unstable conductance regulation due to random growth of conductive filaments. And graph neural networks based on robust and epitaxial film memristors can especially improve energy efficiency due to their high endurance and ultra-low power consumption.

View Article and Find Full Text PDF

Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques-feature tracking strain analysis and T1/T2 mapping-combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment.

View Article and Find Full Text PDF

Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.

View Article and Find Full Text PDF

Graph data is essential for modeling complex relationships among entities. Graph Neural Networks (GNNs) have demonstrated effectiveness in processing low-order undirected graph data; however, in complex directed graphs, relationships between nodes extend beyond first-order connections and encompass higher-order relationships. Additionally, the asymmetry introduced by edge directionality further complicates node interactions, presenting greater challenges for extracting node information.

View Article and Find Full Text PDF

This study presents a novel approach to identifying meters and their pointers in modern industrial scenarios using deep learning. We developed a neural network model that can detect gauges and one or more of their pointers on low-quality images. We use an encoder network, jump connections, and a modified Convolutional Block Attention Module (CBAM) to detect gauge panels and pointer keypoints in images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!