Flying insects exhibit outperforming stability and control via continuous wing flapping even under severe disturbances in various conditions of wind gust and turbulence. While conventional linear proportional derivative (PD)-based controllers are widely employed in insect-inspired flight systems, they usually fail to deal with large perturbation conditions in terms of the 6-DoF nonlinear control strategy. Here we propose a novel wing kinematics-based controller, which is optimized based on deep reinforcement learning (DRL) to stabilize bumblebee hovering under large perturbations. A high-fidelity Open AI Gym environment is established through coupling a CFD data-driven aerodynamic model and a 6-DoF flight dynamic model. The control policy with an action space of 4 is optimized using the off-policy Soft Actor-Critic (SAC) algorithm with automating entropy adjustment, which is verified to be of feasibility and robustness to achieve fast stabilization of the bumblebee hovering flight under full 6-DoF large disturbances. The 6-DoF wing kinematics-based DRL control strategy may provide an efficient autonomous controller design for bioinspired flapping-wing micro air vehicles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10807585 | PMC |
http://dx.doi.org/10.3390/biomimetics8030295 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!