AI Article Synopsis

  • The RAD51 test is being explored as a potential biomarker for assessing homologous recombination deficiency (HRD) in ovarian cancer, but its reliability across different labs hasn't been fully assessed.
  • In a study involving four European laboratories, slight differences in staining techniques led to low variability in RAD51 and γH2AX scores, but some samples showed significant scoring variability due to technical and biological issues.
  • The findings highlight the importance of improving quality control and potentially automating image analysis for the RAD51 test to better identify HRD in high-grade serous ovarian carcinoma (HGSOC) patients, which is crucial for personalized treatment approaches.

Article Abstract

The RAD51 test is emerging as a promising biomarker for the assessment of functional homologous recombination deficiency (HRD). Yet, the robustness and reproducibility of the immunofluorescence-based RAD51 test, in different academic laboratories, have not been systematically investigated. Therefore, we tested the performance of the RAD51 assay in formalin-fixed paraffin-embedded (FFPE) high-grade serous ovarian carcinoma (HGSOC) samples in four European laboratories. Here, we confirm that subtle differences in staining procedures result in low variability of RAD51 and γH2AX scores. However, substantial variability in RAD51 scoring was observed in some samples, likely due to complicating technical and biological features, such as high RAD51 signal-to-noise ratio and RAD51 heterogeneity. These results support the need to identify and perform additional quality control steps and/or automating image analysis. Altogether, resolving technical issues should be a priority, as identifying tumours with functional HRD is urgently needed to guide the individual treatment of HGSOC patients. Follow-up studies are needed to define the key tissue quality requirements to assess HRD by RAD51 in FFPE tumour samples, as this test could help in guiding the individual treatment of HGSOC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10556259PMC
http://dx.doi.org/10.1002/cjp2.336DOI Listing

Publication Analysis

Top Keywords

variability rad51
12
rad51 test
12
rad51
10
homologous recombination
8
recombination deficiency
8
high-grade serous
8
serous ovarian
8
ovarian carcinoma
8
individual treatment
8
treatment hgsoc
8

Similar Publications

Unraveling the complexity of HRD assessment in ovarian cancer by combining genomic and functional approaches: translational analyses of MITO16-MaNGO-OV-2 trial.

ESMO Open

January 2025

Uro-Gynecologic Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy. Electronic address:

Background: Ovarian cancer (OvC) constitutes significant management challenges primarily due to its late-stage diagnosis and the development of resistance to chemotherapy. The standard treatment regimen typically includes carboplatin and paclitaxel, with the addition of poly (ADP-ribose) polymerase inhibitors for patients with high-grade serous ovarian cancer (HGSOC) harboring BRCA1/2 mutations. However, the variability in treatment responses suggests the need to investigate factors beyond BRCA1/2 mutations, such as DNA repair mechanisms and epigenetic alterations.

View Article and Find Full Text PDF

A glimpse into the hidden world of the flexible C-terminal protein binding domains of human RAD52.

J Struct Biol

September 2024

The Eppley Institute for Research in Cancer and Allied Diseases, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA. Electronic address:

Human RAD52 protein binds DNA and is involved in genomic stability maintenance and several forms of DNA repair, including homologous recombination and single-strand annealing. Despite its importance, there are very few structural details about the variability of the RAD52 ring size and the RAD52 C-terminal protein-protein interaction domains. Even recent attempts to employ cryogenic electron microscopy (cryoEM) methods on full-length yeast and human RAD52 do not reveal interpretable structures for the C-terminal half that contains the replication protein A (RPA) and RAD51 binding domains.

View Article and Find Full Text PDF

Protocols for CRISPR-Cas9 editing have been implemented in most model organisms, including fission yeast, for which some improvements have also been later described. Here, we report an improvement to the CRISPR-Cas9 protocol in fission yeast, as we combine a cloning free gap-repair method with our previously described fluoride selection marker, which speeds up genome editing. We also report a wide variability of editing efficiencies at different loci along the genome, and we demonstrate that this variability cannot be explained by the location of the edited sequences in the genome.

View Article and Find Full Text PDF

High-grade serous ovarian carcinoma (HGSC) is the most common subtype of ovarian cancer and is among the most fatal gynecological malignancies worldwide, due to late diagnosis at advanced stages and frequent therapy resistance. In 47 HGSC patients, we assessed somatic and germline genetic variability of a custom panel of 144 known or suspected HGSC-related genes by high-coverage targeted DNA sequencing to identify the genetic determinants associated with resistance to platinum-based therapy. In the germline, the most mutated genes were DNAH14 (17%), RAD51B (17%), CFTR (13%), BRCA1 (11%), and RAD51 (11%).

View Article and Find Full Text PDF

Background And Objective: Neoadjuvant chemotherapy (NAC) followed by cystectomy is the standard of care in muscle-invasive bladder cancer (MIBC). Pathological response has been associated with longer survival, but no currently available clinicopathological variables can identify patients likely to respond, highlighting the need for predictive biomarkers. We sought to identify a predictive signature of response to NAC integrating clinical score, taxonomic subtype, and gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!