Granular metals with SiNdielectrics.

Nanotechnology

Sandia National Laboratories, Albuquerque, NM 87185, United States of America.

Published: July 2023

Understanding and controlling nanoscale interface phenomena, such as band bending and secondary phase formation, is crucial for electronic device optimization. In granular metal (GM) studies, where metal nanoparticles are embedded in an insulating matrix, the importance of interface phenomena is frequently neglected. We demonstrate that GMs can serve as an exemplar system for evaluating the role of secondary phases at interfaces through a combination of x-ray photoemission spectroscopy (XPS) and electrical transport studies. We investigated SiNas an alternative to more commonly used oxide-insulators, as SiN-based GMs may enable high temperature applications when paired with refractory metals. Comparing Co-SiNand Mo-SiNGMs, we found that, in the tunneling-dominated insulating regime, Mo-SiNhad reduced metal-silicide formation and orders-of-magnitude lower conductivity. XPS measurements indicate that metal-silicide and metal-nitride formation are mitigatable concerns in Mo-SiN. Given the metal-oxide formation seen in other GMs, SiNis an appealing alternative for metals that readily oxidize. Furthermore, SiNprovides a path to metal-nitride nanostructures, potentially useful for various applications in plasmonics, optics, and sensing.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ace4d2DOI Listing

Publication Analysis

Top Keywords

interface phenomena
8
granular metals
4
metals sindielectrics
4
sindielectrics understanding
4
understanding controlling
4
controlling nanoscale
4
nanoscale interface
4
phenomena band
4
band bending
4
bending secondary
4

Similar Publications

In the study of GaN/AlGaN heterostructure thermal transport, the interference of strain on carriers cannot be ignored. Although existing research has mainly focused on the intrinsic electronic and phonon behavior of the materials, there is a lack of studies on the transport characteristics of the electron-phonon coupling in heterostructures under strain control. This research comprehensively applies first-principles calculations and the Boltzmann transport equation simulation method to deeply analyze the thermal transport mechanism of the GaN/AlGaN heterojunction considering in-plane strain, with particular attention to the regulatory role of electron-phonon coupling on thermal transport.

View Article and Find Full Text PDF

Spin Canting Promoted Manipulation of Exchange Bias in a Perpendicular Coupled FeGaTe/CrSBr Magnetic van der Waals Heterostructure.

ACS Nano

January 2025

Center of Free Electron Laser & High Magnetic Field, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.

Recently, two-dimensional (2D) van der Waals (vdW) magnetic materials have emerged as a promising platform for studying exchange bias (EB) phenomena due to their atomically flat surfaces and highly versatile stacking configurations. Although complex spin configurations between 2D vdW interfaces introduce challenges in understanding their underlying mechanisms, they can offer more possibilities in realizing effective manipulations. In this study, we present a spin-orthogonal arranged 2D FeGaTe (FGaT)/CrSBr vdW heterostructure, realizing the EB effect with the bias field as large as 1730 Oe at 2 K.

View Article and Find Full Text PDF

The discovery of unconventional superconductivity often triggers significant interest in associated electronic and structural symmetry breaking phenomena. For the infinite-layer nickelates, structural allotropes are investigated intensively. Here, using high-energy grazing-incidence x-ray diffraction, we demonstrate how in-situ temperature annealing of the infinite-layer nickelate PrNiO ( ≈ 0) induces a giant superlattice structure.

View Article and Find Full Text PDF

Advancing next-generation battery technologies requires a thorough understanding of the intricate phenomena occurring at anodic interfaces. This focused review explores key interfacial processes, examining their thermodynamics and consequences in ion transport and charge transfer kinetics. It begins with a discussion on the formation of the electro chemical double layer, based on the GuoyChapman model, and explores how charge carriers achieve equilibrium at the interface.

View Article and Find Full Text PDF

Although the Rare Earth (RE)FeB type magnets were invented in the 1980s and are widely used worldwide. Yet, the phase formation and dissolution mechanisms are still not crystal clear. The reaction dynamics between rare earth elements (REE) and the iron-enriched matrix are essential to understanding the formation of hard magnetic REE-Fe-B phase or, conversely, phase dissociation and performance degeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!