Layered optoelectronic devices are manufactured using multistep procedures that require high precision in the spatial positioning of individual materials. Current technology uses costly and tedious procedures and instrumentation. In this work instead, we propose an approach which exploits the fundamental properties of the substrate to direct the growth of the next layer, here controlled by an electrochemical potential. We have electrochemically synthesized and characterized a series of polymeric materials that are most commonly used in the field. The films produced show gradient monomer ratios embedded in the polymeric film as a function of the distance from the working electrode. Under the optimized conditions, reproducible construction of simple electronic elements, e. g., rectifying diodes, is achieved. We argue that the sequential in situ method leads to gradient composition of polymer chains and the film resulting in the rectification of electric current. We discuss how this system can open new avenues in advanced optoelectronic applications, such as organic light-emitting diodes (OLEDs) or field-effect transistors (OFETs).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cplu.202300280 | DOI Listing |
Adv Mater
January 2025
MOE Key Laboratory for UV Light-Emitting Materials and Technology, Department of Physics, Northeast Normal University, Changchun, 130024, P. R. China.
Avoiding severe structural distortion, irreversible phase transition, and realizing the stabilized multielectron redox are vital for promoting the development of high-performance NASICON-type cathode materials for sodium-ion batteries (SIBs). Herein, a high-entropy NaVFeTiMnCr(PO) (HE-NaTMP) cathode material is prepared by ultrafast high-temperature shock, which inhibits the possibility of phase separation and achieves reversible and stable multielectron transfer of 2.4/2.
View Article and Find Full Text PDFWater Res
January 2025
Department of Environmental Science, Zhejiang University, Hangzhou 310058, PR China. Electronic address:
Zero-valent iron (ZVI) has demonstrated high potential for in-situ remediation of contaminated groundwater and soils. Upon exposure to oxygen, ZVI generates reactive oxygen species (ROS). In parallel with the electron transfer mediated-reductive path, ROS plays a critical role in the oxidative degradation of organic pollutants during ZVI remediation of groundwater and soil.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, CH-1015 Lausanne, Switzerland.
In the dyotropic rearrangement of molecules with semiflexible structures, characterized by a freely rotating static C-C bond, the formation of a mixture of products is common due to the coexistence of several energetically comparable conformers. Herein, we report that it is possible to modulate the shifting groups by adjusting the metal's coordination sphere in Pd-based dyotropic rearrangement. In the presence of a catalytic amount of Pd(II) salt, the reaction of γ-hydroxyalkenes or γ,δ-dihydroxyalkenes with Selectfluor affords fluorinated tetrahydropyranols or 6,8-dioxabicyclo[3.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Applied Geochemistry, Department of Civil, Environmental and Natural Resource Engineering, Luleå University of Technology, Luleå, Sweden.
Int J Radiat Oncol Biol Phys
January 2025
Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
Purpose: Randomized trials have demonstrated similar local tumor control in patients treated with accelerated partial-breast irradiation (APBI) compared with whole-breast irradiation. However, the optimal APBI dose for maximizing tumor control and minimizing toxicity is uncertain.
Methods And Materials: We enrolled patients ≥18 years of age with grade 1 or 2 ductal carcinoma in situ or stage I invasive breast cancer and resection margins ≥2 mm between 2003 and 2011 to a sequential dose-escalation trial using 3-dimensional conformal external beam APBI giving twice daily 4 Gy fractions with total doses of 32 Gy, 36 Gy, and 40 Gy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!