Metabolomics is a powerful tool for uncovering biochemical diversity in a wide range of organisms, and metabolic network modeling is commonly used to frame results in the context of a broader homeostatic system. However, network modeling of poorly characterized, non-model organisms remains challenging due to gene homology mismatches. To address this challenge, we developed Metabolic Interactive Nodular Network for Omics (MINNO), a web-based mapping tool that takes in empirical metabolomics data to refine metabolic networks for both model and unusual organisms. MINNO allows users to create and modify interactive metabolic pathway visualizations for thousands of organisms, in both individual and multi-species contexts. Herein, we demonstrate an important application of MINNO in elucidating the metabolic networks of understudied species, such as those of the genus, which cause Lyme disease and relapsing fever. Using a hybrid genomics-metabolomics modeling approach, we constructed species-specific metabolic networks for three species. Using these empirically refined networks, we were able to metabolically differentiate these genetically similar species via their nucleotide and nicotinate metabolic pathways that cannot be predicted from genomic networks. These examples illustrate the use of metabolomics for the empirical refining of genetically constructed networks and show how MINNO can be used to study non-model organisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10370097 | PMC |
http://dx.doi.org/10.1101/2023.07.14.548964 | DOI Listing |
Funct Integr Genomics
January 2025
Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.
Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China.
Inducible systems are crucial to metabolic engineering and synthetic biology, enabling organisms that function as biosensors and produce valuable compounds. However, almost all inducible systems are strain-specific, limiting comparative analyses and applications across strains rapidly. This study designed and presented a robust workflow for developing the cross-species inducible system.
View Article and Find Full Text PDFNutrients
December 2024
Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, 17100 Çanakkale, Türkiye.
Microalgae are photosynthetic microorganisms that have a rapid growth cycle and carbon fixation ability. They have diverse cellular structures, ranging from prokaryotic cyanobacteria to more complex eukaryotic forms, which enable them to thrive in a variety of environments and support biomass production. They utilize both photosynthesis and heterotrophic pathways, indicating their ecological importance and potential for biotechnological applications.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates.
While the pulmonary effects of regular waterpipe smoking (R-WPS) are well-defined, the impact of occasional waterpipe smoking (O-WPS) on the lungs remains less established. This study investigated the pulmonary toxicity and underlying mechanisms of O-WPS versus R-WPS following 6 months of exposure, focusing on histopathology, inflammation in the lung, bronchoalveolar lavage fluid (BALF), and plasma, as well as oxidative stress, genotoxicity, mitochondrial dysfunction, and the expression of mitogen-activated protein kinases (MAPKs) in lung homogenates. Exposure to both O-WPS and R-WPS resulted in significant histological changes, including increased numbers of alveolar macrophages and lymphocytes, as well as interstitial fibrosis.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain.
Glutaminase controls the first step in glutaminolysis, impacting bioenergetics, biosynthesis and oxidative stress. Two isoenzymes exist in humans, GLS and GLS2. GLS is considered prooncogenic and overexpressed in many tumours, while GLS2 may act as prooncogenic or as a tumour suppressor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!