Reduction oxidation (redox) reactions are central in life and altered redox state is associated with a spectrum of human diseases. Glutathione (GSH) is the most abundant antioxidant in eukaryotic cells and plays critical roles in maintaining redox homeostasis. Thus, measuring intracellular GSH level is an important method to assess the redox state of organism. The currently available GSH probes are based on irreversible chemical reactions with glutathione and can't monitor the real-time glutathione dynamics. Our group developed the first reversible reaction based fluorescent probe for glutathione, which can measure glutathione levels at high resolution using a confocal microscope and in the bulk scale with a flow cytometry. Most importantly it can quantitatively monitor the real-time GSH dynamics in living cells. Using the 2 generation of GSH probe, RealThiol (RT), this study measured the GSH level in living Hela cells after treatment with varying concentrations of DL-Buthionine sulfoximine (BSO) which inhibits GSH synthesis, using a high throughput imaging system, Cytation™ 5 cell imaging reader. The results revealed that GSH probe RT at the concentration of 2.0 µM accurately monitored the BSO treatment effect on GSH level in the Hela cells. The present results demonstrated that the GSH probe RT is sensitive and precise in GSH measurement in living cells at a high throughput imaging platform and has the potential to be applied to any cell lines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369946PMC
http://dx.doi.org/10.1101/2023.07.11.548586DOI Listing

Publication Analysis

Top Keywords

high throughput
12
gsh level
12
gsh probe
12
gsh
11
redox state
8
monitor real-time
8
living cells
8
hela cells
8
throughput imaging
8
glutathione
5

Similar Publications

Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].

View Article and Find Full Text PDF

Natural killer (NK) cells have proven to be safe and effective immunotherapies, associated with favorable treatment responses in chronic myeloid leukemia (CML). Augmenting NK cell function with oncological drugs could improve NK cell-based immunotherapies. Here, we used a high-throughput drug screen consisting of over 500 small-molecule compounds to systematically evaluate the effects of oncological drugs on primary NK cells against CML cells.

View Article and Find Full Text PDF

Background: Historically, soil-transmitted helminth (STH) control and prevention strategies have relied on mass drug administration efforts targeting preschool and school-aged children. While these efforts have succeeded in reducing morbidity associated with STH infection, recent modeling efforts have suggested that expanding intervention to treatment of the entire community could achieve transmission interruption in some settings. Testing the feasibility of such an approach requires large-scale clinical trials, such as the DeWorm3 cluster randomized trial.

View Article and Find Full Text PDF

Three-dimensional multicellular aggregates (MCAs) like organoids and spheroids have become essential tools to study the biological mechanisms involved in the progression of diseases. In cancer research, they are now widely used as in vitro models for drug testing. However, their analysis still relies on tedious manual procedures, which hinders their routine use in large-scale biological assays.

View Article and Find Full Text PDF

This study enrolled 10 patients diagnosed with premalignant lesions and early-stage gastric cardia adenocarcinoma (GCA), confirmed through endoscopic examination. These patients were subjected to next-generation sequencing (NGS) using a customized 1123-gene panel to identify genetic alterations and signaling pathways. The results were compared to stage IIB to IV GCA samples from the cancer genome atlas (TCGA) and a cohort of Hong Kong patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!