The sclerotome in vertebrates comprises an embryonic population of cellular progenitors that give rise to diverse adult tissues including the axial skeleton, ribs, intervertebral discs, connective tissue, and vascular smooth muscle. In the thorax, this cell population arises in the ventromedial region of each of the segmented tissue blocks known as somites. How and when sclerotome adult tissue fates are specified and how the gene signatures that predate those fates are regulated has not been well studied. We have identified a previously unknown role for Ca /calmodulin-dependent protein kinase II (CaMKII) in regulating sclerotome patterning in zebrafish. Mechanistically, CaMKII regulates the activity of parallel signaling inputs that pattern sclerotome gene expression. In one downstream arm, CaMKII regulates distribution of the established sclerotome-inductive morphogen sonic hedgehog (Shh), and thus Shh-dependent sclerotome genes. In the second downstream arm, we show a previously unappreciated inductive requirement for Bmp signaling, where CaMKII activates expression of and consequently Bmp activity. Bmp activates expression of a second subset of stereotypical sclerotome genes, while simultaneously repressing Shh-dependent markers. Our work demonstrates that CaMKII promotes parallel Bmp and Shh signaling as a mechanism to first promote global sclerotome specification, and that these pathways subsequently regionally activate and refine discrete compartmental genetic programs. Our work establishes how the earliest unique gene signatures that likely drive distinct cell behaviors and adult fates arise within the sclerotome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10370206 | PMC |
http://dx.doi.org/10.1101/2023.07.21.550086 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!