Cellular neurobiology has benefited from recent advances in the field of cryo-electron tomography (cryo-ET). Numerous structural and ultrastructural insights have been obtained from plunge-frozen primary neurons cultured on electron microscopy grids. With most primary neurons been derived from rodent sources, we sought to expand the breadth of sample availability by using primary neurons derived from 3 instar larval brains. Ultrastructural abnormalities were encountered while establishing this model system for cryo-ET, which were exemplified by excessive membrane blebbing and cellular fragmentation. To optimize neuronal samples, we integrated substrate selection, micropatterning, montage data collection, and chemical fixation. Efforts to address difficulties in establishing neurons for future cryo-ET studies in cellular neurobiology also provided insights that future practitioners can use when attempting to establish other cell-based model systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369871 | PMC |
http://dx.doi.org/10.1101/2023.07.10.548468 | DOI Listing |
3 Biotech
January 2025
Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China.
Unlabelled: The aim of this research is to investigate whether ferroptosis occurs in the pathogenesis of perioperative neurocognitive disorders (PND), and to explore the function and underlying molecular mechanism of tsRNA in the regulation of ferroptosis in PND. A PND aged mice model was established and behavioral changes and ferroptosis occurrence were confirmed. The effect of ferroptosis inhibitor ferrostatin-1 (Fer-1) on PND mice was detected.
View Article and Find Full Text PDFClinical, neuroimaging and genomics evidence have increasingly underscored a degree of overlap between autism and attention-deficit/hyperactivity disorder (ADHD). This study explores the specific contribution of their core symptoms to shared biology in a sample of N=166 verbal children (6-12 years) with rigorously-established primary diagnoses of either autism or ADHD (without autism). We investigated the associations between inter-individual differences in clinician-based dimensional measures of autism and ADHD symptoms and whole-brain low motion intrinsic functional connectivity (iFC).
View Article and Find Full Text PDFPreterm birth is a leading risk factor for atypicalities in cognitive and sensory processing, but it is unclear how prematurity impacts circuits that support these functions. To address this, we trained adult mice born a day early (preterm mice) on a visual discrimination task and found that they commit more errors and fail to achieve high levels of performance. Using , we found that the neurons in the primary visual cortex (V1) and the V1-projecting prefrontal anterior cingulate cortex (ACC) are hyper-responsive to the reward, reminiscent of cue processing in adolescence.
View Article and Find Full Text PDFACS Chem Neurosci
December 2024
Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China.
Parkinson's disease (PD) is a complicated neurological disease with an unclear pathogenesis. However, dysregulation of gut microbiota and inflammation response play crucial roles in the progression of PD. L.
View Article and Find Full Text PDFBrain Stimul
December 2024
Department of Electrical and Computer Eng., Worcester Polytechnic Inst., Worcester MA USA; Department of Mathematical Sciences, Worcester Polytechnic Inst., Worcester MA USA.
Background: Modeling brain stimulation at the microscopic scale may reveal new paradigms for various stimulation modalities.
Objective: We present the largest map to date of extracellular electric field distributions within a layer L2/L3 mouse primary visual cortex brain sample. This was enabled by the automated analysis of serial section electron microscopy images with improved handling of image defects, covering a volume of 250 × 140 × 90 μm³.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!