Surface-strain-enhanced oxygen dissociation on gold catalysts.

RSC Adv

Center for Electron Microscopy, Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology Tianjin 300384 China

Published: July 2023

Similar Publications

Exploring the Photocatalytic Efficiency of Gold Nanoparticles Deposited on Ni-Al-Zr-Layered Double Hydroxides for Selective Glucose Oxidation.

Molecules

December 2024

Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de L'énergie, 15 rue Baudelocque, FR-80000 Amiens, France.

Confronting escalating challenges in energy security and environmental sustainability has intensified interest in renewable sources for fuels and chemicals. Among the most promising alternatives, sugars derived from biomass are emerging as a cornerstone in advancing an environmentally sustainable economy. Within this framework, the development of sunlight-driven carbohydrate oxidation is of significant interest, as it enables the production of a broad spectrum of high-value, bio-sourced chemicals through eco-friendly processes.

View Article and Find Full Text PDF

A variety of ZnCdS-based semiconductor nanoparticle heterostructures with extended exciton lifetimes were synthesized to enhance the efficacy of photocatalytic hydrogen production in water. Specifically, doped nanoparticles (NPs), as well as core/shell NPs with and without palladium and platinum co-catalysts, were solubilized into water using various methods to assess their efficacy for solar H fuel synthesis. The best results were obtained with low bandgap ZnCdS cores and ZnCdS/ZnS core/shell NPs with palladium co-catalysts.

View Article and Find Full Text PDF

Electrocatalytic urea synthesis from carbon dioxide (CO2) and nitrate (NO3-) offers a promising alternative to traditional industrial methods. However, current catalysts face limitations in the supplies of CO* and Nrelated* intermediates, and their coupling, resulting in unsatisfactory urea production efficiency and energy consumption. To overcome these challenges, we carried out tandem electrosynthesis approach using ruthenium dioxide-supported palladium-gold alloys (Pd2Au1/RuO2).

View Article and Find Full Text PDF

Spontaneous Catalytic Reaction of a Surfactant in the Interfacial Microenvironment of Colloidal Gold Nanoparticles.

J Am Chem Soc

January 2025

State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.

The performance of nanomaterials is significantly determined by the interfacial microenvironment, in which a surfactant plays an essential role as the adsorbent, but its involvement in the interfacial reaction is often overlooked. Here, it was discovered that citrate and ascorbic acid, the two primarily used surfactants for colloidal gold nanoparticles (Au NPs), can spontaneously undergo catalytic reaction with trace-level nitrogenous residue under ambient environment to form oxime, which is subsequently cleaved to generate CN or a compound containing the -CN group. Such a catalytic reaction shows wide universality in both reactants, including various carbonaceous and nitrogenous sources, and metal catalysts, including Au, Ag, Fe, Cu, Ni, Pt, and Pd NPs.

View Article and Find Full Text PDF

Nanoparticle-mediated light-driven LAMP combined with test strips for sensitive and rapid visual detection of antibiotic resistance genes.

J Hazard Mater

December 2024

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

Antibiotic resistance genes (ARGs) are markers of drug-resistant pathogens, monitoring them contributes to prevent resistance to drugs. The detection methods for ARGs including PCR and isothermal amplification are sensitive and selective. However, it may take several hours or cannot be used on spot.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!