Regenerative Agriculture (RA) is used to describe nature-based agronomic approaches that aim to build soil health and crop resilience, minimize negative environmental outcomes, and improve farmer livelihoods. A benefit that is increasingly attributed to crops grown under RA practices is improved nutritional content. However, we do not know the extent to which RA influences crop nutritional quality and under what management approaches and context, can such effects be realized. A scoping review of recent literature (Web of Science, 2000-2021) was carried out to assess the evidence that RA approaches improve crop micronutrient quality. Papers included combinations of agronomic approaches that could be defined as Regenerative: "Organic Inputs" including composts and manures, cover crops, crop rotations, crop residues and biochars; "Reduced Tillage", "Intercropping", "Biostimulants" e.g. arbuscular mycorrhizal fungi; plant growth promoting bacteria, and "Irrigation", typically deficit-irrigation and alternate wetting and drying. The crop types reviewed were predetermined covering common sources of food and included: Tomato (), Wheat (), Rice (), Maize (), Pulses (Fabaceae), Alliums (), and "other" crop types (30 types). This scoping review supports a potential role for RA approaches in increasing the concentrations of micronutrients in the edible portions of several crop types under specific practices, although this was context specific. For example, rice grown under increased organic inputs showed significant increases in grain zinc (Zn) concentration in 15 out of 16 studies. The vitamin C concentration of tomato fruit increased in ~50% of studies when plants were grown under increased organic inputs, and in 76% of studies when plants were grown under deficit irrigation. Overall, the magnitude and reproducibility of the effects of RA practices on most crop nutritional profiles were difficult to assess due to the diversity of RA approaches, geographical conditions, and the limited number of studies for most crops in each of these categories. Future research with appropriate designs, improved on-farm surveillance and nutritional diagnostics are needed for better understanding the potential role of RA in improving the quality of food, human nutrition, and health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10371419PMC
http://dx.doi.org/10.3389/fnut.2023.1078667DOI Listing

Publication Analysis

Top Keywords

agronomic approaches
12
scoping review
12
crop types
12
crop
9
regenerative agriculture
8
edible portions
8
crop nutritional
8
potential role
8
grown increased
8
increased organic
8

Similar Publications

Background: Due to its previously illicit nature, Cannabis sativa had not fully reaped the benefits of recent innovations in genomics and plant sciences. However, Canada's legalization of C. sativa and products derived from its flower in 2018 triggered significant new demand for robust genotyping tools to assist breeders in meeting consumer demands.

View Article and Find Full Text PDF

Background: The development of superior summer maize hybrids with high-yield potential and essential agronomic traits, such as resistance to lodging, is crucial for ensuring the sustainability of maize cultivation. However, the task of identifying and breeding genotypes that exhibit exceptional performance and stability across multiple environment conditions, while considering a wide range of traits, is challenging. Given the backdrop of global climate change, understanding which climate variables and soil properties most significantly impact environmental similarity is essential for selecting hybrids with improved adaptability to regions with diverse climatic and soil conditions.

View Article and Find Full Text PDF

Pharmaceutical supplementation and dietary fortification are the most common approaches to reducing vitamin deficits. To improve the health and nutritional value of crops, agronomic biofortification necessitates the direct application of nutrients. Producers using micronutrient fertilizers to increase the fortification of crops are essential to the success of biofortification.

View Article and Find Full Text PDF

Microbial Inoculants in Sustainable Agriculture: Advancements, Challenges, and Future Directions.

Plants (Basel)

January 2025

Laboratory of Microbial Resource Biotechnology, Department of Agronomic and Veterinary Sciences, Sonora Institute of Technology, 5 de Febrero 818, Centro, Ciudad Obregón 85000, Sonora, Mexico.

The rapid growth of the human population has significantly increased the demand for food, leading to the intensification of agricultural practices that negatively impact the environment. Climate change poses a significant threat to global food production, as it can disrupt crop yields and modify the lifecycle stages of phytopathogens and pests. To address these challenges, the use of microbial inoculants, which are bioproducts containing beneficial microorganisms known as plant growth promotion microorganisms (PGPMs), has emerged as an innovative approach in sustainable agriculture.

View Article and Find Full Text PDF

The cotton mealybug, Tinsley (Hemiptera: Pseudococcidae), is an invasive polyphagous pest that has been reported in several tomato-producing Mediterranean countries. However, information regarding the impact of temperature variations on its potential damage and population dynamics on this crop is limited. The effect of four temperatures (20 ± 1 °C, 25 ± 1 °C, 30 ± 1 °C and 35 ± 1 °C) on the development, reproduction, and population growth parameters of on tomatoes under controlled laboratory conditions was investigated using age-stage two-sex life tables.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!