Escherichia coli mutants defective in DNA uracil N-glycosidase (ung-) or endonuclease VI active against apurinic/apyrimidinic sites in DNA (xthA-) exhibit enhanced sensitivity towards 5-bromodeoxyuridine relative to the wild type strain, pointing to involvement of these enzymes in repair of bromouracil-induced lesions in DNA. Mutants defective in DNA polymerase I, either in polymerizing activity (polAl-) or (5' leads to 3')-exonuclease activity (polA107-) exhibit unusually high sensitivity (including marked lethality) in the presence of 5-bromodeoxyuridine. The results indicate that DNA polymerase I, and its associated (5'--3')-exonuclease activity, are involved in repair of bromouracil-induced lesions and are not readily replaced, if at all, by DNA polymerases II and III. Thermosensitive mutant in DNA ligase gene (lig ts7) shows high sensitivity towards 5-bromodeoxyuridine at 42 degrees C indicating the role of the enzyme in repair of bromouracil-induced lesions in DNA. Involvement of DNA uracil N-glycosidase, and endonuclease active against apurinic/apyrimidinic sites in recognition and repair of 5-bromouracil-induced damage permits of some inferences regarding the nature of this damage (lesions), in particular dehalogenation of incorporated bromouracil to uracil residues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00269999 | DOI Listing |
Mutagenesis resulting from incorporation of 5-bromouracil (BU) in the DNA of E. coli K12 proceeds largely (approximately 80%) via misrepair of the lesions resulting from incorporation of the analogue. The premutational lesions are due principally to dehalogenation of incorporated BU residues, leading to formation of uracil residues, and removal of these by uracil-DNA glycosylase with formation of apyrimidinic sites.
View Article and Find Full Text PDFCells of wild-type Haemophilus influenzae and of a mismatch-repair-deficient mutant (hex-) were grown in a chemically defined medium containing either thymidine or 5-bromodeoxyuridine (BUdR). Spontaneous mutation frequencies to resistance against 3 antibiotics observed for the thymidine cultures were 10-30 times higher for the hex- mutant. The mutation frequencies observed for the BUdR hex- culture were increased by another 10 times while those for the wild-type suspension did not differ from the frequencies seen in the thymidine medium.
View Article and Find Full Text PDFEscherichia coli mutants defective in DNA uracil N-glycosidase (ung-) or endonuclease VI active against apurinic/apyrimidinic sites in DNA (xthA-) exhibit enhanced sensitivity towards 5-bromodeoxyuridine relative to the wild type strain, pointing to involvement of these enzymes in repair of bromouracil-induced lesions in DNA. Mutants defective in DNA polymerase I, either in polymerizing activity (polAl-) or (5' leads to 3')-exonuclease activity (polA107-) exhibit unusually high sensitivity (including marked lethality) in the presence of 5-bromodeoxyuridine. The results indicate that DNA polymerase I, and its associated (5'--3')-exonuclease activity, are involved in repair of bromouracil-induced lesions and are not readily replaced, if at all, by DNA polymerases II and III.
View Article and Find Full Text PDFMutat Res
October 1978
A screening procedure based on the formation of papillae on individual bacterial colonies was used to isolate mutants of Escherichia coli with high mutation rates in the presence of bromouracil. Most of the mutants obtained had high spontaneous mutation rates and mapped close to the previously known mutators mutT, mutS, mutR, uvrE and mutL. Except for mutants of mutT type, these mutators also showed high mutability by bromouracil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!