A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A comparison of numerical approaches for statistical inference with stochastic models. | LitMetric

Unlabelled: Due to our limited knowledge about complex environmental systems, our predictions of their behavior under different scenarios or decision alternatives are subject to considerable uncertainty. As this uncertainty can often be relevant for societal decisions, the consideration, quantification and communication of it is very important. Due to internal stochasticity, often poorly known influence factors, and only partly known mechanisms, in many cases, a stochastic model is needed to get an adequate description of uncertainty. As this implies the need to infer constant parameters, as well as the time-course of stochastic model states, a very high-dimensional inference problem for model calibration has to be solved. This is very challenging from a methodological and a numerical perspective. To illustrate aspects of this problem and show options to successfully tackle it, we compare three numerical approaches: Hamiltonian Monte Carlo, Particle Markov Chain Monte Carlo, and Conditional Ornstein-Uhlenbeck Sampling. As a case study, we select the analysis of hydrological data with a stochastic hydrological model. We conclude that the performance of the investigated techniques is comparable for the analyzed system, and that also generality and practical considerations may be taken into account to guide the choice of which technique is more appropriate for a particular application.

Supplementary Information: The online version contains supplementary material available at 10.1007/s00477-023-02434-z.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368571PMC
http://dx.doi.org/10.1007/s00477-023-02434-zDOI Listing

Publication Analysis

Top Keywords

numerical approaches
8
stochastic model
8
monte carlo
8
comparison numerical
4
approaches statistical
4
statistical inference
4
stochastic
4
inference stochastic
4
stochastic models
4
models unlabelled
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!