The activity and selectivity of a copper electrocatalyst during the electrochemical CO reduction reaction (eCORR) are largely dominated by the interplay between local reaction environment, the catalyst surface, and the adsorbed intermediates. characterization studies have revealed many aspects of this intimate relationship between surface reactivity and adsorbed species, but these investigations are often limited by the spatial and temporal resolution of the analytical technique of choice. Here, Raman spectroscopy with both space and time resolution was used to reveal the distribution of adsorbed species and potential reaction intermediates on a copper electrode during eCORR. Principal component analysis (PCA) of the Raman spectra revealed that a working electrocatalyst exhibits spatial heterogeneities in adsorbed species, and that the electrode surface can be divided into CO-dominant (mainly located at dendrite structures) and C-C dominant regions (mainly located at the roughened electrode surface). Our spectral evaluation further showed that in the CO-dominant regions, linear CO was observed (as characterized by a band at ∼2090 cm), accompanied by the more classical Cu-CO bending and stretching vibrations located at ∼280 and ∼360 cm, respectively. In contrast, in the C-C directing region, these three Raman bands are suppressed, while at the same time a band at ∼495 cm and a broad Cu-CO band at ∼2050 cm dominate the Raman spectra. Furthermore, PCA revealed that anodization creates more C-C dominant regions, and labeling experiments confirmed that the 495 cm band originates from the presence of a Cu-C intermediate. These results indicate that a copper electrode at work is very dynamic, thereby clearly displaying spatiotemporal heterogeneities, and that micro-spectroscopic techniques are crucial for understanding the eCORR mechanism of working electrocatalyst materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369669 | PMC |
http://dx.doi.org/10.1021/jacsau.3c00129 | DOI Listing |
Phys Chem Chem Phys
January 2025
UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, OX11 0FA, UK.
Methanol adsorption isotherms of fresh f-ZSM-5 and steamed s-ZSM-5 (Si/Al ≈ 40) are investigated experimentally at room temperature under equilibrium and by grand canonical Monte Carlo (GCMC) simulations with the aim of understanding the adsorption capacity, geometry and sites as a function of steam treatment (at 573 K for 24 h). Methanol adsorption energies calculated by GCMC are complemented by density functional theory (DFT) employing both periodic and quantum mechanics/molecular mechanics (QM/MM) techniques. Physical and textural properties of f-ZSM-5 and s-ZSM-5 are characterised by diffuse reflectance infrared Fourier transformed spectroscopy (DRIFTS) and N-physisorption, which form a basis to construct models for f-ZSM-5 and s-ZSM-5 to simulate methanol adsorption isotherms by GCMC.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, The University of Hong Kong, Hong Kong Island 000000, Hong Kong SAR, China.
Methanol (ME) is a liquid hydrogen carrier, ideal for on-site-on-demand H generation, avoiding its costly and risky distribution issues, but this "ME-to-H" electric conversion suffers from high voltage (energy consumption) and competitive oxygen evolution reaction. Herein, we demonstrate that a synergistic cofunctional PtPd/(Ni,Co)(OH) catalyst with Pt single atoms (Pt) and Pd nanoclusters (Pd) anchored on OH-vacancy(V)-rich (Ni,Co)(OH) nanoparticles create synergistic triadic active sites, allowing for methanol-enhanced low-voltage H generation. For MOR, OH* is preferentially adsorbed on Pd and then interacts with the intermediates (such as *CHO or *CHOOH) adsorbed favorably on neighboring Pt with the assistance of hydrogen bonding from the surface hydrogen of (Ni,Co)(OH).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Chemical Engineering, Zakir Hussain College of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
Water pollution because of the presence of heavy metals remains a serious worry. The present work demonstrates the exclusion of cobalt ion (or Co(II)) from water using novel and cost-effective biosorbents. Initially, the biosorbent was chemically modified using orthophosphoric acid and then subjected to calcination to result acid modified date seed biochar (AMDB).
View Article and Find Full Text PDFSci Rep
January 2025
Research Laboratory of Inorganic Chemical Process Technologies, School of Chemical Engineering, University of Science and Technology, Narmak, Tehran, 1684613114, Iran.
This study aims to utilize secondary aluminum dross waste to synthesize Fe-Al layered double hydroxide (Fe-Al LDH) for efficient adsorption of arsenic from drinking water. The synthesis process was based on a multi-step hydrometallurgical approach, in which the aluminum content in the waste was first converted to sodium aluminate. This was followed by the transformation into Fe-Al LDH through a series of processes, including gelation, sol formation, simultaneous precipitation, and aging.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
The catalysts of Ni nanoparticles supported on ZrO, LaO and LaZrO were prepared and employed in photothermal catalytic DRM. High yield of H and CO (76.2 and 99.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!