Gelatin is a natural polymer commonly used in biomedical applications in combination with other materials due to its high biocompatibility, biodegradability, and similarity to collagen, principal protein of the extracellular matrix (ECM). The aim of this study was to evaluate the suitability of gelatin as the sole material to manufacture tissue engineering scaffolds by electrospinning. Gelatin was electrospun in nine different concentrations onto a rotating collector and the resulting scaffold's mechanical properties, morphology and topography were assessed using mechanical testing, scanning electron microscopy and white light interferometry, respectively. After characterizing the scaffolds, the effects of the concentration of the solvents and crosslinking agent were statistically evaluated with multivariate analysis of variance and linear regressions. Fiber diameter and inter-fiber separation increased significantly when the concentration of the solvents, acetic acid (HAc) and dimethyl sulfoxide (DMSO), increased. The roughness of the scaffolds decreased as the concentration of dimethyl sulfoxide increased. The mechanical properties were significantly affected by the DMSO concentration. Immersed crosslinked scaffolds did not degrade until day 28. The manufactured gelatin-based electrospun scaffolds presented comparable mechanical properties to many human tissues such as trabecular bone, gingiva, nasal periosteum, oesophagus and liver tissue. This study revealed for the first time that biomimetic electrospun scaffolds with gelatin alone can be produced for a significant number of human tissues by appropriately setting up the levels of factors and their interactions. These findings also extend statistical relationships to a form that would be an excellent starting point for future research that could optimize factors and interactions using both traditional statistics and machine learning techniques to further develop specific human tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368888 | PMC |
http://dx.doi.org/10.3389/fbioe.2023.1160760 | DOI Listing |
Polymers (Basel)
December 2024
Additive Technologies Center, Tomsk Polytechnic University, Tomsk 634050, Russia.
Electrospun poly(ε-caprolactone) (PCL)-based scaffolds are widely used in tissue engineering. However, low cell adhesion remains the key drawback of PCL scaffolds. It is well known that nitrogen-doped diamond-like carbon (N-DLC) coatings deposited on the surface of various implants are able to enhance their biocompatibility and functional properties.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA.
Muscle stem cells (MuSCs) are essential for skeletal muscle regeneration, influenced by a complex interplay of mechanical, biochemical, and molecular cues. Properties of the extracellular matrix (ECM) such as stiffness and alignment guide stem cell fate through mechanosensitive pathways, where forces like shear stress translate into biochemical signals, affecting cell behavior. Aging introduces senescence which disrupts the MuSC niche, leading to reduced regenerative capacity via epigenetic alterations and metabolic shifts.
View Article and Find Full Text PDFJ Texture Stud
February 2025
Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.
The increasing demand for protein-rich, plant-based foods has driven the development of meat analogs that closely mimic the texture and mouthfeel of animal meat. While plant-based fibrils and electrospun silk fibroin fibers have been explored for texture enhancement and scaffolding in both meat analogs and cell-based meats, the use of wet-spun fibroin protein fibers as a food ingredient remains underexplored. This study investigates the potential of wet-spun recombinant fibroin fibers to enhance the textural properties of meat analogs.
View Article and Find Full Text PDFMater Today Bio
February 2025
Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University München, Munich, Germany.
In this study, an advanced nanofiber breast cancer model was developed and systematically characterized including physico-chemical, cell-biological and biophysical parameters. Using electrospinning, the architecture of tumor-associated collagen signatures (TACS5 and TACS6) was mimicked. By employing a rotating cylinder or static plate collector set-up, aligned fibers (TACS5-like structures) and randomly orientated fibers (TACS6-like structures) fibers were produced, respectively.
View Article and Find Full Text PDFBiomaterials
December 2024
Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325011, China. Electronic address:
The effective prevention and treatment of anastomotic leakage after intestinal anastomosis for colorectal diseases is still a major clinical challenge. In order to assist intestinal anastomosis healing and avoid anastomotic leakage caused by high tension, low blood supply or infection, we designed a double-layer nanofiber intestinal anastomosis scaffold, which was composed of electrospun PTMC/PHA nanofibers as the main layer, and electrospun PVA/OHA-Gs nanofibers with antibacterial properties as the antibacterial surface layer. This double-layer scaffold has good toughness, its maximum tensile force value could reach 8 N, elongation could reach 400 %, and it has hydrophilic properties, and its contact angle was about 60°.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!