Coastal ecosystems are highly dynamic areas for carbon cycling and are likely to be negatively impacted by increasing ocean acidification. This research focused on dissolved inorganic carbon (DIC) and total alkalinity (TA) in the Mississippi Sound to understand the influence of local rivers on coastal acidification. This area receives large fluxes of freshwater from local rivers, in addition to episodic inputs from the Mississippi River through a human-built diversion, the Bonnet Carré Spillway. Sites in the Sound were sampled monthly from August 2018 to November 2019 and weekly from June to August 2019 in response to an extended spillway opening. Prior to the 2019 spillway opening, the contribution of the local, lower alkalinity rivers to the Sound may have left the study area more susceptible to coastal acidification during winter months, with aragonite saturation states (Ω) < 2. After the spillway opened, despite a large increase in TA throughout the Sound, aragonite saturation states remained low, likely due to hypoxia and increased CO concentrations in subsurface waters. Increased Mississippi River input could represent a new normal in the Sound's hydrography during spring and summer months. The spillway has been utilized more frequently over the last two decades due to increasing precipitation in the Mississippi River watershed, which is primarily associated with climate change. Future increases in freshwater discharge and the associated declines in salinity, dissolved oxygen, and Ω in the Sound will likely be detrimental to oyster stocks and the resilience of similar ecosystems to coastal acidification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369924 | PMC |
http://dx.doi.org/10.1002/lno.12237 | DOI Listing |
Mar Environ Res
January 2025
National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, 325035, Wenzhou, China; Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, 325035, Wenzhou, China. Electronic address:
Zn is a common heavy metal pollutant in water bodies and accounts for the largest proportion of heavy metal pollutants in many rivers entering the sea. This study investigated the growth and physiological response characteristics of Sargassum fusiforme under different divalent Zn ion concentration gradients. We observed that low concentration Zn treatment (<2 mg L) exerted no significant effect on the growth rate, photosynthesis, and nitrogen metabolism-related indicators of S.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China. Electronic address:
To assess the environmental status of an abandoned aquaculture and breeding area in the northeast coast of the Hainan Island, surface and well water, sediment and surface soils were sampled and analyzed for conventional physicochemical properties, heavy metals and antibiotics. Metagenome tests were also conducted to determine the composition and diversity of the microbial community in typical habitats. Affected by the discharge of wastewater from higher-place pond aquaculture, coastal freshwater rivers have undergone significant salinization, Cl and Na were as high as 4.
View Article and Find Full Text PDFEcohealth
January 2025
Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
Peccaries (collared peccary-CP-and white-lipped peccary-WLP) are an essential source of protein and income for rural communities in the Amazon region. Since 1980s, researchers in the Amazon have reported recurrent local disappearances of WLP populations. Although such disappearances impact the species conservation and the food security of rural societies, no studies have drawn consistent conclusions about the causes of these population collapses.
View Article and Find Full Text PDFChemosphere
January 2025
Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu Province, 730000, China; Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
Peroxyacetyl Nitrate (CHC(O)ONO, PAN), a typical secondary product of photochemical reactions, is well known to be a better photochemical indicator due to the only secondary photochemical source in the troposphere. Studies on PAN pollution are sparse in northwest China, resulting in a limited understanding of photochemical pollution in recent years. Herein, the measurement of PAN, O, volatile organic compounds (VOCs), NO, other related species, and meteorological parameters were conducted from May 1 to August 31, 2022, at an urban site in Lanzhou.
View Article and Find Full Text PDFEnviron Manage
January 2025
School of Public Policy and Urban Affairs, Northeastern University, Boston, MA, USA.
Riverine flooding is increasing in frequency and intensity, requiring river management agencies to consider new approaches to working with communities on flood mitigation planning. Communication and information sharing between agencies and communities is complex, and mistrust and misinformation arise quickly when communities perceive that they are excluded from planning. Subsequently, riverfront community members create narratives that can be examined as truth regimes-truths created and repeated that indicate how flooding and its causes are understood, represented, and discussed within their communities-to explain why flooding occurs in their area.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!