Introduction: Non-alcoholic fatty liver disease (NAFLD) can progress to more severe stages, such as steatohepatitis and fibrosis. Thermoneutral housing together with high-fat diet promoted NAFLD progression in C57BL/6J mice. Due to possible differences in steatohepatitis development between different C57BL/6 substrains, we examined how thermoneutrality affects NAFLD progression in C57BL/6N mice.
Methods: Male mice were fed standard or high-fat diet for 24 weeks and housed under standard (22°C) or thermoneutral (30°C) conditions.
Results: High-fat feeding promoted weight gain and hepatic steatosis, but the effect of thermoneutral environment was not evident. Liver expression of inflammatory markers was increased, with a modest and inconsistent effect of thermoneutral housing; however, histological scores of inflammation and fibrosis were generally low (<1.0), regardless of ambient temperature. In standard diet-fed mice, thermoneutrality increased weight gain, adiposity, and hepatic steatosis, accompanied by elevated lipogenesis and changes in liver metabolome characterized by complex decreases in phospholipids and metabolites involved in urea cycle and oxidative stress defense.
Conclusion: Thermoneutrality appears to promote NAFLD-associated phenotypes depending on the C57BL/6 substrain and/or the amount of dietary fat.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369058 | PMC |
http://dx.doi.org/10.3389/fendo.2023.1205703 | DOI Listing |
Mol Cell Endocrinol
January 2025
Division of Cardiology, Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48105, USA; Ann Arbor VA Healthcare System, 2215 Fuller Rd, Ann Arbor, MI, 48105, USA. Electronic address:
Preclinical heart failure studies rely heavily on mouse models despite their higher metabolic and heart rates compared to humans. This study examines how mouse strain (C57BL/6J vs. C57BL/6N) and housing temperature (23 °C vs.
View Article and Find Full Text PDFJ Physiol
December 2024
Faculty of Biology, University of Białystok, Białystok, Poland.
Low basal metabolic rate (BMR) is a risk factor for obesity, whereas elevation of non-shivering thermogenesis (NST) is a promising means to combat obesity. Because heat generated by NST covers thermogenic needs not fulfilled by BMR, one can expect the presence of a negative relationship between both parameters. Understanding of the mechanisms underlying this relationship is therefore important for interpretation of the results of translational experiments and the development of anti-obesity treatments.
View Article and Find Full Text PDFExp Physiol
December 2024
Exercise Biological Center, China Institute of Sport Science, Beijing, China.
The impact of housing temperature on exercise-induced metabolic adaptations is not well understood, despite extensive research on the benefits of exercise for metabolic health. The aim of this study was to elucidate how housing temperatures influence the molecular responses and metabolic benefits of exercise in mice. Male C57BL/6N mice were housed at either room temperature (RT, 21°C) or in a thermoneutral environment (TN, 29°C) and subjected to either a 6-week or acute exercise regimen.
View Article and Find Full Text PDFClin Sci (Lond)
December 2024
Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
Chronic inflammatory diseases, e.g., obesity, cardiovascular disease, and type 2 diabetes, progressively suppress the anti-inflammatory heat shock response (HSR) by impairing the synthesis of key components, perpetuating inflammation.
View Article and Find Full Text PDFBiomolecules
November 2024
Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-693, SP, Brazil.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!