Not just Glia-Dissecting brain macrophages in the mouse.

Glia

Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.

Published: January 2024

Macrophages have emerged as critical cellular components of the central nervous system (CNS), promoting development, maintenance, and immune defense of the CNS. Here we will review recent advances in our understanding of brain macrophage heterogeneity, including microglia and border-associated macrophages, focusing on the mouse. Emphasis will be given to the discussion of strengths and limitations of the experimental approaches that have led to the recent insights and hold promise to further deepen our mechanistic understanding of brain macrophages that might eventually allow to harness their activities for the management of CNS pathologies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.24445DOI Listing

Publication Analysis

Top Keywords

brain macrophages
8
understanding brain
8
glia-dissecting brain
4
macrophages
4
macrophages mouse
4
mouse macrophages
4
macrophages emerged
4
emerged critical
4
critical cellular
4
cellular components
4

Similar Publications

Therapeutic Potential of (L.) . Leaf Extract in Modulating Gut Microbiota and Immune Response for the Treatment of Inflammatory Bowel Disease.

Pharmaceuticals (Basel)

January 2025

School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China.

Inflammatory bowel disease (IBD) is a persistent inflammatory condition affecting the gastrointestinal tract, distinguished by the impairment of the intestinal epithelial barrier, dysregulation of the gut microbiota, and abnormal immune responses. (L.) , traditionally used in Chinese herbal medicine for gastrointestinal issues such as bleeding and dysentery, has garnered attention for its potential therapeutic benefits.

View Article and Find Full Text PDF

Glioblastoma (GBM) is an aggressive brain tumor characterized by extensive metabolic reprogramming that drives tumor growth and therapeutic resistance. Key metabolic pathways, including glycolysis, lactate production, and lipid metabolism, are upregulated to sustain tumor survival in the hypoxic and nutrient-deprived tumor microenvironment (TME), while glutamine and tryptophan metabolism further contribute to the aggressive phenotype of GBM. These metabolic alterations impair immune cell function, leading to exhaustion and stress in CD8+ and CD4+ T cells while favoring immunosuppressive populations such as regulatory T cells (Tregs) and M2-like macrophages.

View Article and Find Full Text PDF

: Brain cancers represent a formidable oncological challenge characterized by their aggressive nature and resistance to conventional therapeutic interventions. The tumor microenvironment has emerged as a critical determinant of tumor progression and treatment efficacy. Within this complex ecosystem, microglia and macrophages play fundamental roles, forming intricate networks with peripheral immune cell populations, particularly T cells.

View Article and Find Full Text PDF

The course of relapsing-remitting multiple sclerosis (RRMS) is highly variable and there is a lack of effective prognostic biomarkers. This study aimed to assess the potential prognostic value of the chemokines B lymphocyte chemoattractant molecule (CXCL13), eotaxin-1 (CCL11), and macrophage inflammatory protein 3-alpha (CCL20) in RRMS. Forty-two patients with MS were enrolled, along with 22 controls, 12 of the controls were idiopathic intracranial hypertension (IIH) patients, and 10 of the controls were other neurologic diseases (OND).

View Article and Find Full Text PDF

The blood-brain barrier and the distinct brain immunology provide challenges in translating commonly used chemotherapeutics to treat intracranial tumors. Previous reports suggest anti-tumoral effects of antipsychotics, encouraging investigations into potential treatment effects of neuroleptics on brain metastases. For the first time, the therapeutic potential of the antipsychotic drug clozapine in treating melanoma brain metastases (MBM) was investigated using three human MBM cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!