Modelling the interaction of invasive-invaded species based on the general Bramson dynamics and with a density dependant diffusion and advection.

Math Biosci Eng

Department of Information Technology, Escuela Politecnica Superior, Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, Boadilla del Monte, Madrid 28668, Spain.

Published: June 2023

The main goal of the presented study is to introduce a model of a pairwise invasion interaction with a nonlinear diffusion and advection. The new equation is based on the further general works introduced by Bramson (1988) to describe the invasive-invaded dynamics. This type of model is made particular with a density dependent diffusion along with an advection term. The new resulting model is then analyzed to explore the regularity, existence and uniqueness of solutions. It is well known that density dependent diffusion operators induce a propagating front with finite speed for compactly supported functions. Based on this, we introduce an analytical approach to determine the evolution of such a propagating front in the invasion dynamics. Afterward, we study the problem with travelling wave profiles and a numerical assessment. As a main finding to remark: When both species propagate with significantly different travelling wave speeds, the interaction becomes unstable, while when the species propagate with similar low speeds, the interaction stabilizes.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2023589DOI Listing

Publication Analysis

Top Keywords

diffusion advection
12
based general
8
density dependent
8
dependent diffusion
8
propagating front
8
travelling wave
8
species propagate
8
speeds interaction
8
modelling interaction
4
interaction invasive-invaded
4

Similar Publications

Sulfides as environmental stressors in Paracas Bay, Peru.

Mar Pollut Bull

January 2025

Facultad de Pesquería, Universidad Nacional Agraria La Molina, Av. La Molina S/N, La Molina, Lima 15024, Peru.

Paracas Bay, located in the Humboldt Current system, is a highly variable coastal environment where hypoxia (dissolved oxygen concentrations <2 mg L) has been reported as a persistent feature of bottom conditions. In addition to hypoxia, milky water events have been reported in the bay, most likely associated with the presence of sulfides (i.e.

View Article and Find Full Text PDF

Reaction-advection-diffusion model of highly pathogenic avian influenza with behavior of migratory wild birds.

J Math Biol

January 2025

School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, Jilin, People's Republic of China.

Wild birds are one of the main natural reservoirs for avian influenza viruses, and their migratory behavior significantly influences the transmission of avian influenza. To better describe the migratory behavior of wild birds, a system of reaction-advection-diffusion equations is developed to characterize the interactions among wild birds, poultry, and humans. By the next-generation operator, the basic reproduction number of the model is formulated.

View Article and Find Full Text PDF

We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery.

View Article and Find Full Text PDF

Alkylated polycyclic aromatic hydrocarbons (PAHs) are abundant constituents of many PAH mixtures and contribute to risk at contaminated sites. Despite their abundance, the movement of alkylated PAHs remains understudied relative to unsubstituted PAHs. In the present study, passive sampling devices were deployed in the air, water, and sediments at 11 locations across multiple seasons to capture spatial and temporal variability in the abundance and movement of alkylated PAHs at a Brownsfield creosote site in Oregon, USA.

View Article and Find Full Text PDF

The Waddington landscape was initially proposed to depict cell differentiation, and has been extended to explain phenomena such as reprogramming. The landscape serves as a concrete representation of cellular differentiation potential, yet the precise representation of this potential remains an unsolved problem, posing significant challenges to reconstructing the Waddington landscape. The characterization of cellular differentiation potential relies on transcriptomic signatures of known markers typically.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!