Disinformation refers to false rumors deliberately fabricated for certain political or economic conspiracies. So far, how to prevent online disinformation propagation is still a severe challenge. Refutation, media censorship, and social bot detection are three popular approaches to stopping disinformation, which aim to clarify facts, intercept the spread of existing disinformation, and quarantine the source of disinformation, respectively. In this paper, we study the collaboration of the above three countermeasures in defending disinformation. Specifically, considering an online social network, we study the most cost-effective dynamic budget allocation (DBA) strategy for the three methods to minimize the proportion of disinformation-supportive accounts on the network with the lowest expenditure. For convenience, we refer to the search for the optimal DBA strategy as the DBA problem. Our contributions are as follows. First, we propose a disinformation propagation model to characterize the effects of different DBA strategies on curbing disinformation. On this basis, we establish a trade-off model for DBA strategies and reduce the DBA problem to an optimal control model. Second, we derive an optimality system for the optimal control model and develop a heuristic numerical algorithm called the DBA algorithm to solve the optimality system. With the DBA algorithm, we can find possible optimal DBA strategies. Third, through numerical experiments, we estimate key model parameters, examine the obtained DBA strategy, and verify the effectiveness of the DBA algorithm. Results show that the DBA algorithm is effective.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2023584 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!