Despite being easy to implement and having fast convergence speed, balancing the convergence and diversity of multi-objective particle swarm optimization (MOPSO) needs to be further improved. A multi-objective particle swarm optimization with reverse multi-leaders (RMMOPSO) is proposed as a solution to the aforementioned issue. First, the convergence strategy of global ranking and the diversity strategy of mean angular distance are proposed, which are used to update the convergence archive and the diversity archive, respectively, to improve the convergence and diversity of solutions in the archives. Second, a reverse selection method is proposed to select two global leaders for the particles in the population. This is conducive to selecting appropriate learning samples for each particle and leading the particles to quickly fly to the true Pareto front. Third, an information fusion strategy is proposed to update the personal best, to improve convergence of the algorithm. At the same time, in order to achieve a better balance between convergence and diversity, a new particle velocity updating method is proposed. With this, two global leaders cooperate to guide the flight of particles in the population, which is conducive to promoting the exchange of social information. Finally, RMMOPSO is simulated with several state-of-the-art MOPSOs and multi-objective evolutionary algorithms (MOEAs) on 22 benchmark problems. The experimental results show that RMMOPSO has better comprehensive performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2023522 | DOI Listing |
Sci Rep
January 2025
Department of Energy Engineering & Physics, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
The depletion of fossil fuel reserves, increasing environmental concerns, and energy demands of remote communities have increased the acceptance of using hybrid renewable energy systems (HRES). However, choosing an optimal HRES from economic, environmental, reliability, and sustainability aspects is still challenging. To solve this challenge, this study introduces a novel multi-objective optimization approach using the Gravitational Search Algorithm (GSA) and non-dominated sorting techniques.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Engineering, Helwan University, Cairo, Egypt.
Frequency regulation in isolated microgrids is challenging due to system uncertainties and varying load demands. This study presents an optimal µ-synthesis robust control strategy that regulates microgrid frequency while enhancing system performance and stability-a proposed fixed-structure approach for selecting performance and robustness weights, informed by subsystem frequency analysis. The controller is optimized using multi-objective particle swarm optimization (MOPSO) and multi-objective genetic algorithm (MOGA) under inequality constraints, employing a Pareto front to identify optimal solutions.
View Article and Find Full Text PDFSci Rep
January 2025
Renewable Energy Research Group, Isfahan, Iran.
The performance of nanofluids is largely determined by their thermophysical properties. Optimizing these properties can significantly enhance nanofluid performance. This study introduces a hybrid strategy based on computational intelligence to determine the optimal conditions for ternary hybrid nanofluids.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Basic Courses, Xi'an Research Institute of Hi-Tech, Xi'an, 710025, China.
Unmanned aerial vehicle (UAV) path planning is a constrained multi-objective optimization problem. With the increasing scale of UAV applications, finding an efficient and safe path in complex real-world environments is crucial. However, existing particle swarm optimization (PSO) algorithms struggle with these problems as they fail to consider UAV dynamics, resulting in many infeasible solutions and poor convergence to optimal solutions.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
Multi-objective and multi-stage decision-making problems require balancing multiple objectives at each stage and making optimal decision in multi-dimensional control variables, where the commonly used intelligent optimization algorithms suffer from low solving efficiency. To this end, this paper proposes an efficient algorithm named non-dominated sorting dynamic programming (NSDP), which incorporates non-dominated sorting into the traditional dynamic programming method. To improve the solving efficiency and solution diversity, two fast non-dominated sorting methods and a dynamic-crowding-distance based elitism strategy are integrated into the NSDP algorithm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!