Background: Several magnetic resonance (MR) techniques have been suggested for radiation-free imaging of osseous structures.
Purpose: To compare the diagnostic value of ultra-short echo time and gradient echo T1-weighted MRI for the assessment of vertebral pathologies using histology and computed tomography (CT) as the reference standard.
Study Type: Prospective.
Subjects: Fifty-nine lumbar vertebral bodies harvested from 20 human cadavers (donor age 73 ± 13 years; 9 male).
Field Strength/sequence: Ultra-short echo time sequence optimized for both bone (UTEb) and cartilage (UTEc) imaging and 3D T1-weighted gradient-echo sequence (T1GRE) at 3 T; susceptibility-weighted imaging (SWI) gradient echo sequence at 1.5 T. CT was performed on a dual-layer dual-energy CT scanner using a routine clinical protocol.
Assessment: Histopathology and conventional CT were acquired as standard of reference. Semi-quantitative and quantitative morphological features of degenerative changes of the spines were evaluated by four radiologists independently on CT and MR images independently and blinded to all other information. Features assessed were osteophytes, endplate sclerosis, visualization of cartilaginous endplate, facet joint degeneration, presence of Schmorl's nodes, and vertebral dimensions. Vertebral disorders were assessed by a pathologist on histology.
Statistical Tests: Agreement between T1GRE, SWI, UTEc, and UTEb sequences and CT imaging and histology as standard of reference were assessed using Fleiss' κ and intra-class correlation coefficients, respectively.
Results: For the morphological assessment of osteophytes and endplate sclerosis, the overall agreement between SWI, T1GRE, UTEb, and UTEc with the reference standard (histology combined with CT) was moderate to almost perfect for all readers (osteophytes: SWI, κ range: 0.68-0.76; T1GRE: 0.92-1.00; UTEb: 0.92-1.00; UTEc: 0.77-0.85; sclerosis: SWI, κ range: 0.60-0.70; T1GRE: 0.77-0.82; UTEb: 0.81-0.92; UTEc: 0.61-0.71). For the visualization of the cartilaginous endplate, UTEc showed the overall best agreement with the reference standard (histology) for all readers (κ range: 0.85-0.93).
Data Conclusions: Morphological assessment of vertebral pathologies was feasible and accurate using the MR-based bone imaging sequences compared to CT and histopathology. T1GRE showed the overall best performance for osseous changes and UTEc for the visualization of the cartilaginous endplate.
Level Of Evidence: 1 TECHNICAL EFFICACY: Stage 2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmri.28927 | DOI Listing |
Bull Exp Biol Med
January 2025
Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.
Front Oncol
December 2024
Newcastle Magnetic Resonance Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom.
Introduction: Ductal carcinoma (DCIS) accounts for 25% of newly diagnosed breast cancer cases with only 14%-53% developing into invasive ductal carcinoma (IDC), but currently overtreated due to inadequate accuracy of mammography. Subtypes of calcification, discernible from histology, has been suggested to have prognostic value in DCIS, while the lipid composition of saturated and unsaturated fatty acids may be altered in synthesis with potential sensitivity to the difference between DCIS and IDC. We therefore set out to examine calcification using ultra short echo time (UTE) MRI and lipid composition using chemical shift-encoded imaging (CSEI), as markers for histological calcification classification, in the initial step towards application.
View Article and Find Full Text PDFDiagn Interv Imaging
December 2024
Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, Nancy 54035, France.
Magnetic resonance imaging (MRI) techniques that enhance the visualization of mineralized tissues (hereafter referred to as MT-MRI) are increasingly being incorporated into clinical practice, particularly in musculoskeletal imaging. These techniques aim to mimic the contrast provided by computed tomography (CT), while taking advantage of MRI's superior soft tissue contrast and lack of ionizing radiation. However, the variety of MT-MRI techniques, including three-dimensional gradient-echo, ultra-short and zero-echo time, susceptibility-weighted imaging, and artificial intelligence-generated synthetic CT, each offer different technical characteristics, advantages, and limitations.
View Article and Find Full Text PDFMagn Reson Med
March 2025
MRILab, Institute for Molecular Imaging and Instrumentation (i3M), Spanish National Research Council (CSIC), Universitat Politècnica de València (UPV), Valencia, Spain.
Purpose: Zero-echo-time (ZTE) sequences have proven a powerful tool for MRI of ultrashort tissues, but they fail to produce useful images in the presence of strong field inhomogeneities (14 000 ppm). Here we seek a method to correct reconstruction artifacts from non-Cartesian acquisitions in highly inhomogeneous , where the standard double-shot gradient-echo approach to field mapping fails.
Methods: We present a technique based on magnetic field maps obtained from two geometric distortion-free point-wise (SPRITE) acquisitions.
PLoS One
September 2024
Department of Translational Medicine, Medical Radiation Physics, Lund University, Malmö, Sweden.
Identifying biomarkers in fibrotic lung disease is key for early anti-fibrotic intervention. Dynamic contrast-enhanced (DCE) MRI offers valuable perfusion-related insights in fibrosis but adapting human MRI methods to rodents poses challenges. Here, we explored these translational challenges for the inflammatory and fibrotic phase of a bleomycin lung injury model in rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!