Repetitive paired-pulse transcranial magnetic stimulation (TMS) at indirect (I)-wave periodicity (iTMS) can increase plasticity in primary motor cortex (M1). Both TMS coil orientation and muscle activation can influence I-wave activity, but it remains unclear how these factors influence M1 plasticity with iTMS. We therefore investigated the influence of TMS coil orientation and muscle activation on the response to iTMS. Thirty-two young adults (24.2 ± 4.8 years) participated in three experiments. Each experiment included two sessions using a modified iTMS intervention with either a posterior-anterior orientation (PA) or anterior-posterior (AP) coil orientation over M1. Stimulation was applied in resting (Experiments 1 and 3) or active muscle (Experiments 2 and 3). Effects of iTMS on M1 excitability were assessed by recording motor evoked potentials (MEPs) and short-interval intracortical facilitation (SICF) with PA and AP orientations in both resting (all experiments) and active (Experiment 2) muscle. For the resting intervention, MEPs were greater after AP iTMS (Experiment 1, P = .046), whereas SICF was comparable between interventions (all P > .10). For the active intervention, responses did not vary between PA and AP iTMS (Experiment 2, all P > .14), and muscle activation reduced the effect of AP iTMS during the intervention (Experiment 3, P = .002). Coil orientation influenced the MEP response after iTMS, and muscle activation reduced the response during iTMS. While this suggests that AP iTMS may be beneficial in producing a neuroplastic modulation of I-wave circuits in resting muscle, further exploration of factors such as dosing is required.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10946698 | PMC |
http://dx.doi.org/10.1111/ejn.16099 | DOI Listing |
Sports Med Open
January 2025
Institute of Primary Care, University of Zurich, Zurich, Switzerland.
Background: Marathon training and running have many beneficial effects on human health and physical fitness; however, they also pose risks. To date, no comprehensive review regarding both the benefits and risks of marathon running on different organ systems has been published.
Main Body: The aim of this review was to provide a comprehensive review of the benefits and risks of marathon training and racing on different organ systems.
The ejaculatory reflex consists of emission and expulsion, with the latter involving rhythmic muscular contractions that propel seminal fluid. Botulinum toxin, through its inhibitory effects, has been hypothesized to improve premature ejaculation (PE). This study evaluates high-quality evidence on botulinum toxin-A injections into the bulbospongiosal muscle as a treatment for PE.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Movement Science, Institute of Sports Science, University of Klagenfurt, Klagenfurt, Austria.
Over the last decades, resistance training (RT) has experienced a surge in popularity, and compelling evidence underpins its beneficial effects on health, well-being, and performance. However, sports and exercise research findings may translate poorly into practice. This study investigated the knowledge of Austrian gym-goers regarding common myths and truths in RT.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Orthopaedic Surgery, School of Medicine, International University of Health and Welfare, 4-3, Kozunomori, Narita, Chiba, 286-8686, Japan.
The occurrence of diseases characterized by irregular spinal alignment, such as kyphosis, lordosis, scoliosis, and dropped head syndrome (DHS) is increasing, particularly among older adults. DHS is characterized by an excessive forward tilt of the head and neck, causing the head to droop. Although it is believed that muscle activity plays a role in both the onset and treatment of DHS, the underlying mechanisms remain unclear.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Guizhou Key Laboratory of New Quality Processing and Storage of Ecological Specialty Food; School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
Traditional dry-curing methods have a long cycle time and low efficiency, resulting in the inconsistent quality of dry-cured ham. By applying electrical stimulation (ES) technology in the dry-curing process, it was found that ES affected mitochondrial apoptosis by modulating the intracellular environment of muscle cells, which, in turn, enhanced the quality of dry-cured pork loin. Specifically, ES accelerated glycogen and ATP depletion, which led to a rapid decline in pH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!