From Material to Cameras: Low-Dimensional Photodetector Arrays on CMOS.

Small Methods

Electrical and Computer Engneering Department, Northwestern University, Evanston, IL, 60208, USA.

Published: February 2024

The last two decades have witnessed a dramatic increase in research on low-dimensional material with exceptional optoelectronic properties. While low-dimensional materials offer exciting new opportunities for imaging, their integration in practical applications has been slow. In fact, most existing reports are based on single-pixel devices that cannot rival the quantity and quality of information provided by massively parallelized mega-pixel imagers based on complementary metal-oxide semiconductor (CMOS) readout electronics. The first goal of this review is to present new opportunities in producing high-resolution cameras using these new materials. New photodetection methods and materials in the field are presented, and the challenges involved in their integration on CMOS chips for making high-resolution cameras are discussed. Practical approaches are then presented to address these challenges and methods to integrate low-dimensional material on CMOS. It is also shown that such integrations could be used for ultra-low noise and massively parallel testing of new material and devices. The second goal of this review is to present the colossal untapped potential of low-dimensional material in enabling the next-generation of low-cost and high-performance cameras. It is proposed that low-dimensional materials have the natural ability to create excellent bio-inspired artificial imaging systems with unique features such as in-pixel computing, multi-band imaging, and curved retinas.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202300595DOI Listing

Publication Analysis

Top Keywords

low-dimensional material
12
low-dimensional materials
8
goal review
8
high-resolution cameras
8
low-dimensional
6
material
5
material cameras
4
cameras low-dimensional
4
low-dimensional photodetector
4
photodetector arrays
4

Similar Publications

Optimization of In-Situ Growth of Superconducting Al/InAs Hybrid Systems on GaAs for the Development of Quantum Electronic Circuits.

Materials (Basel)

January 2025

CNR-IOM-Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy.

Hybrid systems consisting of highly transparent channels of low-dimensional semiconductors between superconducting elements allow the formation of quantum electronic circuits. Therefore, they are among the novel material platforms that could pave the way for scalable quantum computation. To this aim, InAs two-dimensional electron gases are among the ideal semiconductor systems due to their vanishing Schottky barrier; however, their exploitation is limited by the unavailability of commercial lattice-matched substrates.

View Article and Find Full Text PDF

Silicon-based all-solid-state batteries operating free from external pressure.

Nat Commun

January 2025

Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Key Laboratory of Low Dimensional Condensed Matter Physics (Department of Education of Fujian Province), Jiujiang Research Institute, Xiamen University, Xiamen, China.

Silicon-based all-solid-state batteries offer high energy density and safety but face significant application challenges due to the requirement of high external pressure. In this study, a LiSi/Si-LiSi double-layered anode is developed for all-solid-state batteries operating free from external pressure. Under the cold-pressed sintering of LiSi alloys, the anode forms a top layer (LiSi layer) with mixed ionic/electronic conduction and a bottom layer (Si-LiSi layer) containing a three-dimensional continuous conductive network.

View Article and Find Full Text PDF

Theoretical Design for Thorium-Containing Two-Dimensional Materials.

Inorg Chem

January 2025

Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 10084, China.

Actinide elements are characterized by their unique electronic correlations, variable valence states, and localized 5f electrons, leading to unconventional electronic and topological properties in their compounds. The distinctive physical properties of actinide materials are maintained in low-dimensional forms, yet two-dimensional (2D) actinide materials remain largely unexplored due to their scarcity and the experimental challenges posed by their radioactivity. To fill the knowledge gap in 2D actinide materials, we theoretically designed a series of stable thorium-containing 2D materials, including MXenes, chalcogenides, halides, and other compounds with unique structures.

View Article and Find Full Text PDF

Single-crystal Au(111), renowned for its chemically inert surface, long-range "herringbone" reconstruction, and high electrical conductivity, has long served as an exemplary template in diverse fields, , crystal epitaxy, electronics, and electrocatalysis. However, commercial Au(111) products are high-priced and limited to centimeter sizes, largely restricting their broad applications. Herein, a low-cost, high-reproducible method is developed to produce 4 in.

View Article and Find Full Text PDF

Quantum Contextual Hypergraphs, Operators, Inequalities, and Applications in Higher Dimensions.

Entropy (Basel)

January 2025

Center of Excellence for Advanced Materials and Sensors, Research Unit Photonics and Quantum Optics, Institute Ruder Bošković, 10000 Zagreb, Croatia.

Quantum contextuality plays a significant role in supporting quantum computation and quantum information theory. The key tools for this are the Kochen-Specker and non-Kochen-Specker contextual sets. Traditionally, their representation has been predominantly operator-based, mainly focusing on specific constructs in dimensions ranging from three to eight.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!