Background: Dental pulp stem cells (DPSCs) are adult stem cells with multi-directional differentiation potential derived from ectoderm. Vitro experiments have shown that adding cytokines can help DPSCs to be transformed from multipotent stem cells to osteoblasts. TGF-β has been proved to have an effect on the proliferation and mineralization of bone tissue, but its effect on the osteogenesis and proliferation of dental pulp stem cells is still uncertain. We aim to determine the effect of TGF-β on the osteogenesis and proliferation of dental pulp stem cells.

Methods: We have identified studies from the Cochrane Central Register of Controlled Trials, PubMed, Embase, and China national knowledge infrastructure (CNKI) for studies interested in TGF-β and proliferation and differentiation of dental pulp stem cells in the following indicators: A490 (an index for evaluating cell proliferation), bone sialoprotein (BSP), Col plasmid-1 (Col-1), osteocalcin (OCN), runt-related transcription factor 2 (Runx-2); and the number of mineralized nodules. Any language restrictions were rejected. Furthermore, we drew a forest plot for each outcome. We conducted a sensitivity analysis, data analysis, heterogeneity, and publication bias test. We evaluate the quality of each study under the guidance of Cochrane's tool for quality assessment.

Results: The pooled data showed that TGF-β could promote the proliferation and ossification of dental pulp stem cells. All the included results support this conclusion except for the number of mineralized nodules: TGF-β increases the A490 index (SMD 3.11, 95% CI [0.54-5.69]), promotes the production of BSP (SMD 3.11, 95% CI [0.81-6.77]), promotes the expression of Col-1 (SMD 4.71, 95% CI [1.25-8.16]) and Runx-2 (SMD 3.37, 95% CI [- 0.63 to 7.36]), increases the content of OCN (SMD 4.32, 95% CI [1.20-7.44]) in dental pulp, and has no significant effect on the number of mineralized nodules (SMD 3.87, 95% CI [- 1.76 to 9.51]) in dental pulp stem cells.

Conclusions: TGF-β promotes the proliferation and osteogenesis of dental pulp stem cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373408PMC
http://dx.doi.org/10.1186/s40001-023-01227-yDOI Listing

Publication Analysis

Top Keywords

dental pulp
36
pulp stem
32
stem cells
32
number mineralized
12
mineralized nodules
12
stem
10
dental
9
pulp
9
tgf-β promotes
8
proliferation
8

Similar Publications

Objectives: Dental pulp stem cells (DPSCs) are essential for reparative dentinogenesis following damage or infection. DPSCs surrounding the blood vessels in the central region of the dental pulp actively proliferate after tooth injury and differentiate into new odontoblast-like cells or odontoblasts to form reparative dentin. However, the signaling pathways involved in undifferentiated and osteodifferentiated DPSCs under inflammatory conditions remain unclear.

View Article and Find Full Text PDF

Introduction: The dynamic navigation system (DNS) in endodontics presents a significant learning curve. This cross-sectional study aimed to assess the number of cases required to achieve consistent performance in DNS-assisted treatment of maxillary anterior teeth with pulp canal calcification.

Methods: A series of DNS procedures were performed on 45 calcified maxillary anterior teeth with pulp necrosis by a single endodontist who had no prior clinical DNS experience.

View Article and Find Full Text PDF

Apical periodontitis is an inflammatory disease caused by bacterial infection in the root canal that spreads to the apical periodontal tissues, resulting in bone resorption around the root apex as the disease progresses. Vascular endothelial growth factor (VEGF), a growth factor involved in angiogenesis, plays an important role in bone remodeling. We reported that caffeic acid phenethyl ester (CAPE), a bioactive substance of propolis, induces VEGF in odontoblast-like cells and dental pulp cells.

View Article and Find Full Text PDF

Stem cells derived from the apical papilla (SCAPs) play a crucial role in tooth root development and dental pulp regeneration. They are important seed cells for bone/tooth tissue engineering. However, replicative senescence remains an unavoidable issue as in vitro amplification increases.

View Article and Find Full Text PDF

Diabetic peripheral neuropathy (DPN) is the most common form of diabetic neuropathy, representing 75% of cases and posing a substantial public health challenge. Emerging evidence from animal studies indicates that stem cell therapy holds significant promise as a potential treatment for diabetic neuropathy. Nevertheless, a comprehensive evaluation of the safety and efficacy of stem cell therapy for DPN in animal studies remains outstanding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!