Background: The dynamics of phosphatidylserine in the plasma membrane is a tightly regulated feature of eukaryotic cells. Phosphatidylserine (PS) is found preferentially in the inner leaflet of the plasma membrane. Disruption of this asymmetry leads to the exposure of phosphatidylserine on the cell surface and is associated with cell death, synaptic pruning, blood clotting and other cellular processes. Due to the role of phosphatidylserine in widespread cellular functions, an efficient phosphatidylserine probe is needed to study them. Currently, a few different phosphatidylserine labelling tools are available; however, these labels have unfavourable signal-to-noise ratios and are difficult to use in tissues due to limited permeability. Their application in living tissue requires injection procedures that damage the tissue and release damage-associated molecular patterns, which in turn stimulates phosphatidylserine exposure.
Methods: For this reason, we developed a novel genetically encoded phosphatidylserine probe based on the C2 domain of the lactadherin (MFG-E8) protein, suitable for labelling exposed phosphatidylserine in various research models. We tested the C2 probe specificity to phosphatidylserine on hybrid bilayer lipid membranes by observing surface plasmon resonance angle shift. Then, we analysed purified fused C2 proteins on different cell culture lines or engineered AAVs encoding C2 probes on tissue cultures after apoptosis induction. For in vivo experiments, neurotropic AAVs were intravenously injected into perinatal mice, and after 2 weeks, brain slices were collected to observe C2-SNAP expression.
Results: The biophysical analysis revealed the high specificity of the C2 probe for phosphatidylserine. The fused recombinant C2 proteins were suitable for labelling phosphatidylserine on the surface of apoptotic cells in various cell lines. We engineered AAVs and validated them in organotypic brain tissue cultures for non-invasive delivery of the genetically encoded C2 probe and showed that these probes were expressed in the brain in vivo after intravenous AAV delivery to mice.
Conclusions: We have demonstrated that the developed genetically encoded PS biosensor can be utilised in a variety of assays as a two-component system of C2 and C2m2 fusion proteins. This system allows for precise quantification and PS visualisation at directly specified threshold levels, enabling the evaluation of PS exposure in both physiological and cell death processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373266 | PMC |
http://dx.doi.org/10.1186/s11658-023-00472-7 | DOI Listing |
BMC Plant Biol
January 2025
Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
Background: The St-genome-sharing taxa are highly complex group of the species with the St nuclear genome and monophyletic origin in maternal lineages within the Triticeae, which contains more than half of polyploid species that distributed in a wide range of ecological habitats. While high level of genetic heterogeneity in plastome DNA due to a reticulate evolutionary event has been considered to link with the richness of the St-genome-sharing taxa, the relationship between the dynamics of diversification and molecular evolution is lack of understanding.
Results: Here, integrating 106 previously and 12 newly sequenced plastomes representing almost all previously recognized genomic types and genus of the Triticeae, this study applies phylogenetic reconstruction methods in combination with lineage diversification analyses, estimate of sequence evolution, and gene expression to investigate the dynamics of diversification in the tribe.
Commun Med (Lond)
January 2025
Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Background: Gene signatures derived from transcriptomic-causal networks offer potential for tailoring clinical care in cancer treatment by identifying predictive and prognostic biomarkers. This study aimed to uncover such signatures in metastatic colorectal cancer (CRC) patients to aid treatment decisions.
Methods: We constructed transcriptomic-causal networks and integrated gene interconnectivity into overall survival (OS) analysis to control for confounding genes.
Stargardt disease is a currently untreatable, inherited neurodegenerative disease that leads to macular degeneration and blindness due to loss-of-function mutations in the ABCA4 gene. We have designed a dual adeno-associated viral vector encoding a split-intein adenine base editor to correct the most common mutation in ABCA4 (c.5882G>A, p.
View Article and Find Full Text PDFNat Metab
January 2025
Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
Choline is an essential micronutrient critical for cellular and organismal homeostasis. As a core component of phospholipids and sphingolipids, it is indispensable for membrane architecture and function. Additionally, choline is a precursor for acetylcholine, a key neurotransmitter, and betaine, a methyl donor important for epigenetic regulation.
View Article and Find Full Text PDFNature
January 2025
Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
Germline BRCA2 loss-of function variants, which can be identified through clinical genetic testing, predispose to several cancers. However, variants of uncertain significance limit the clinical utility of test results. Thus, there is a need for functional characterization and clinical classification of all BRCA2 variants to facilitate the clinical management of individuals with these variants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!