About 30% of malignant tumors include KRAS mutations, which are frequently required for the development and maintenance of malignancies. KRAS is now a top-priority cancer target as a result. After years of research, it is now understood that the oncogenic KRAS-G12C can be targeted. However, many other forms, such as the G13D mutant, are yet to be addressed. Here, we used a receptor-based pharmacophore modeling technique to generate potential inhibitors of the KRAS-G13D oncogenic mutant. Using a comprehensive virtual screening workflow model, top hits were selected, out of which CSC01 was identified as a promising inhibitor of the oncogenic KRAS mutant (G13D). The stability of CSC01 upon binding the switch II pocket was evaluated through an exhaustive molecular dynamics simulation study. The several post-simulation analyses conducted suggest that CSC01 formed a stable complex with KRAS-G13D. CSC01, through a dynamic protein-ligand interaction profiling analysis, was also shown to maintain strong interactions with the mutated aspartic acid residue throughout the simulation. Although binding free energy analysis through the umbrella sampling approach suggested that the affinity of CSC01 with the switch II pocket of KRAS-G13D is moderate, our DFT analysis showed that the stable interaction of the compound might be facilitated by the existence of favorable molecular electrostatic potentials. Furthermore, based on ADMET predictions, CSC01 demonstrated a satisfactory drug likeness and toxicity profile, making it an exemplary candidate for consideration as a potential KRAS-G13D inhibitor.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00726-023-03304-2DOI Listing

Publication Analysis

Top Keywords

inhibitor oncogenic
8
g13d mutant
8
switch pocket
8
csc01
7
csc01 promise
4
promise potential
4
potential inhibitor
4
oncogenic
4
oncogenic g13d
4
mutant
4

Similar Publications

EML4-ALK: Update on ALK Inhibitors.

Int J Mol Sci

January 2025

Centro di Riferimento Oncologico di Aviano (CRO), Department of Medical Oncology, IRCCS, 33081 Aviano, Italy.

Since the discovery of the first-generation ALK inhibitor, many other tyrosine kinase inhibitors have been demonstrated to be effective in the first line or further lines of treatment in patients with advanced non-small cell lung cancer with EMLA4-ALK translocation. This review traces the main milestones in the treatment of ALK-positive metastatic patients and the survival outcomes in the first-line and second-line settings with different ALK inhibitors. It presents the two options available for first-line treatment at the present time: sequencing different ALK inhibitors versus using the most potent inhibitor in front-line treatment.

View Article and Find Full Text PDF

: Pancreatic Ductal Adeno-Carcinoma (PDAC) is a highly aggressive cancer, with limited treatment options. Disruption of the circadian clock, which regulates key cellular processes, has been implicated in PDAC initiation and progression. Hence, targeting circadian clock components may offer new therapeutic opportunities for the disease.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs) formation is a key process in inflammatory diseases like gout, but the underlying molecular mechanisms remain incompletely understood. This study aimed to establish a model to examine the formation of NETs induced by monosodium urate (MSU) and phorbol 12-myristate 13-acetate (PMA) and to elucidate their molecular pathways. Laser confocal microscopy was used to visualize NET formation, while flow cytometry was employed to detect reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

MDM2 and MDM4 are major negative regulators of tumor suppressor p53. Beyond regulating p53, MDM2 possesses p53-independent activity in promoting cell cycle progression and tumorigenesis via its RING domain ubiquitin E3 ligase activity. MDM2 and MDM4 form heterodimer polyubiquitin E3 ligases via their RING domain interaction.

View Article and Find Full Text PDF

Computational-aided rational mutation design of pertuzumab to overcome active HER2 mutation S310F through antibody-drug conjugates.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Precision Medicine and Biopharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

Recurrent missense mutations in the human epidermal growth factor receptor 2 (HER2) have been identified across various human cancers. Among these mutations, the active S310F mutation in the HER2 extracellular domain stands out as not only oncogenic but also confers resistance to pertuzumab, an antibody drug widely used in clinical cancer therapy, by impeding its binding. In this study, we have successfully employed computational-aided rational design to undertake directed evolution of pertuzumab, resulting in the creation of an evolved pertuzumab variant named Ptz-SA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!