AI Article Synopsis

  • Obesity is a widespread global issue, with some individuals being metabolically healthy despite being overweight, and gene-environment interactions, particularly involving the MC4R gene, play a role in this condition.
  • The study evaluated the relationship between dietary fat quality (specifically the cholesterol-saturated fat index and the omega-6 to omega-3 ratio) and the MC4R gene among 279 women with overweight and obesity to identify metabolically healthy versus unhealthy phenotypes.
  • Results showed that women with the CC genotype of the MC4R gene were more likely to develop an unhealthy metabolic phenotype when consuming higher omega-6 to omega-3 ratios, highlighting conflicting dietary recommendations based on metabolic health status.

Article Abstract

Obesity has become a common global problem. Some obese people can be metabolically healthy. Gene-environment interaction can be important in this context. This study aimed to assess the interaction between dietary fat quality indices and the Melanocortin 4 receptor (MC4R) gene in metabolically healthy and unhealthy overweight and obese women. This cross-sectional study was conducted on 279 women with overweight and obesity. The definition of metabolically healthy and unhealthy phenotypes was done according to Karelis criteria. Dietary assessment was done using a 147-item validated semi-quantitative food frequency questionnaire and dietary fat quality was assessed by cholesterol-saturated fat index (CSI) and the ratio of omega-6/omega-3 (N6/N3) essential fatty acids. MC4R was genotyped by polymerase chain reaction-restriction fragment length polymorphism technique. A generalized linear model was used to evaluate the interaction between dietary fat quality indices and the MC4R gene in both crude and adjusted models. Study subjects with higher ratio of N6/N3 had higher homeostatic model assessment for insulin resistance (HOMA IR) index (P = 0.03) and other variables showed no difference according to the tertile of CSI and N6/N3. Participants with the C allele of MC4R rs17782313 had lower height (P < 0.001) and higher HOMA index (P = 0.01). We found that the CC genotype of MC4R interacts with the N6/N3 ratio on the metabolically unhealthy phenotype in the crude model (β = 9.94, CI 2.49-17.39, P = 0.009) and even after adjustment for all confounders (β = 9.002, CI 1.15-16.85, P = 0.02, β =  - 12.12, CI 2.79-21.46, P = 0.01). The data of this study can justify one inconsistency observed in society, regarding dietary recommendations about metabolic health status. Those with CC genotype, are more likely to have an unhealthy phenotype with an increase in N6/N3 as one fat quality indices than those who do not have CC genotype. We found the interaction of dietary fat quality indices such as N6/N3 and the MC4R gene in metabolically unhealthy overweight and obese women.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374546PMC
http://dx.doi.org/10.1038/s41598-023-38988-9DOI Listing

Publication Analysis

Top Keywords

dietary fat
16
fat quality
16
metabolically healthy
16
interaction dietary
12
quality indices
12
mc4r gene
12
healthy unhealthy
12
indices mc4r
8
gene metabolically
8
unhealthy overweight
8

Similar Publications

Recent studies have suggested that the interaction between diet and an individual's genetic predisposition can determine the likelihood of obesity and various metabolic disorders. The current study aimed to examine the association of dietary branched-chain amino acids(BCAAs) and aromatic amino acids(AAAs) with the expression of the leptin and FTO genes in the visceral and subcutaneous adipose tissues of individuals undergoing surgery. This cross-sectional study was conducted on 136 Iranian adults, both men and women, aged ≥18 years.

View Article and Find Full Text PDF

Purpose Of Review: This narrative review explores the role of Medical Nutritional Therapy (MNT) in managing Metabolic-Associated Steatotic Liver Disease (MASLD), previously known as nonalcoholic fatty liver disease. It aims to examine the effectiveness of specific nutritional strategies in preventing and treating this obesity-linked liver disease.

Recent Findings: Emerging evidence underscores the benefits of the Mediterranean diet, low-carbohydrate diets, and intermittent fasting in reducing liver fat, improving insulin sensitivity, and mitigating inflammation.

View Article and Find Full Text PDF

Aim: Time-restricted eating (TRE) limits the time for food intake to typically 6-10 h/day without other dietary restrictions. The aim of the RESET2 (the REStricted Eating Time in the treatment of type 2 diabetes) trial is to investigate the effects on glycaemic control (HbA) and the feasibility of a 1-year TRE intervention in individuals with overweight/obesity and type 2 diabetes. The aim of the present paper is to describe the protocol for the RESET2 trial.

View Article and Find Full Text PDF

Background: β-Hydroxy-β-methyl butyrate (HMB) is a metabolite of the amino acid leucine, known for its ergogenic effects on body composition and strength. Despite these benefits, the magnitude of these effects remains unclear due to variability among studies. This umbrella review aims to synthesize meta-analyses investigating the effects of HMB on body composition and muscle strength in adults.

View Article and Find Full Text PDF

A Randomized Pilot Study of Time-Restricted Eating Shows Minimal Microbiome Changes.

Nutrients

January 2025

Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.

Objective: TRE is an emerging approach in obesity treatment, yet there is limited data on how it influences gut microbiome composition in humans. Our objective was to characterize the gut microbiome of human participants before and after a TRE intervention. This is a secondary analysis of a previously published clinical trial examining the effects of time-restricted eating (TRE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!