Ionised gas, i.e., plasma, is a medium where electrons-ions dynamics are electrically and magnetically altered. Electric and magnetic fields can modify plasma's optical loss, refraction, and gain. Still, plasma's low pressure and large electrical fields have presented as challenges to introducing it to micro-cavities. Here we demonstrate optical microresonators, with walls thinner than an optical wavelength, that contain plasma inside them. By having an optical mode partially overlapping with plasma, we demonstrate resonantly enhanced light-plasma interactions. In detail, we measure plasma refraction going below one and plasma absorption that turns the resonator transparent. Furthermore, we photograph the plasma's micro-striations, with 35 μm wavelength, indicating magnetic fields interacting with plasma. The synergy between micro-photonics and plasma might transform micro-cavities, and electro-optical interconnects by adding additional knobs for electro-optically controlling light using currents, electric-, and magnetic-fields. Plasma might impact microphotonics by enabling new types of microlasers and electro-optical devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374664PMC
http://dx.doi.org/10.1038/s41467-023-40205-0DOI Listing

Publication Analysis

Top Keywords

plasma
9
magnetic fields
8
absorption-induced transmission
4
transmission plasma
4
plasma microphotonics
4
microphotonics ionised
4
ionised gas
4
gas plasma
4
plasma medium
4
medium electrons-ions
4

Similar Publications

Neurotransmitter release is triggered in microseconds by Ca-binding to the Synaptotagmin-1 C-domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 CB domain to SNARE complexes through a "primary interface" comprising two regions (I and II). The Synaptotagmin-1 Ca-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers, or helping bridge the membranes, but SNARE complex binding through the primary interface orients the Ca-binding loops away from the fusion site, hindering these putative activities.

View Article and Find Full Text PDF

Background: The antigen Na-GST-1, expressed by the hookworm Necator americanus, plays crucial biochemical roles in parasite survival. This study explores the development of mRNA vaccine candidates based on Na-GST-1, building on the success of recombinant Na-GST-1 (rNa-GST-1) protein, currently assessed as a subunit vaccine candidate, which has shown promise in preclinical and clinical studies.

Methodology/findings: By leveraging the flexible design of RNA vaccines and protein intracellular trafficking signal sequences, we developed three variants of Na-GST-1 as native (cytosolic), secretory, and plasma membrane-anchored (PM) antigens.

View Article and Find Full Text PDF

Associations between variants in the FTO locus and plasma concentrations of appetite related hormones are inconsistent, and might not work in a dose dependent fashion in people with obesity. Moreover, it is relevant to report meal related plasma concentrations of these hormones in persons with obesity given the growing interest in their pharmacological potential in obesity therapy. We find it clinically relevant to examine associations between the SNP rs9939609 genotypes and homeostatic appetite regulation in individuals with BMI ≥35 kg/m2.

View Article and Find Full Text PDF

This study investigates the geochemical characteristics of rare earth elements (REEs) in highland karstic bauxite deposits located in the Sierra de Bahoruco, Pedernales Province, Dominican Republic. These deposits, formed through intense weathering of volcanic material, represent a potentially valuable REE resource for the nation. Surface and subsurface soil samples were analyzed using portable X-ray fluorescence (pXRF) and a NixPro 2 color sensor validated with inductively coupled plasma optical emission spectrometry (ICP-OES).

View Article and Find Full Text PDF

Objectives: Acute kidney injury (AKI) is a syndrome with high mortality and morbidity in part due to delayed recognition based on changes in creatinine. A marker for AKI based on a single measurement is needed and therefore the performance of a single measurement of plasma neutrophil gelatinase-associated lipocalin (pNGAL) to predict AKI in patients admitted to the emergency department was tested.

Methods: Samples from the Triage study which included 6005 consecutive adult patients admitted to the emergency department were tested for pNGAL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!