Sensory atypicalities are particularly common in autism spectrum disorders (ASD). Nevertheless, our knowledge about the divergent functioning of the underlying somatosensory region and its association with ASD phenotype features is limited. We applied a data-driven approach to map the fine-grained variations in functional connectivity of the primary somatosensory cortex (S1) to the rest of the brain in 240 autistic and 164 neurotypical individuals from the EU-AIMS LEAP dataset, aged between 7 and 30. We estimated the S1 connection topography ('connectopy') at rest and during the emotional face-matching (Hariri) task, an established measure of emotion reactivity, and accessed its association with a set of clinical and behavioral variables. We first demonstrated that the S1 connectopy is organized along a dorsoventral axis, mapping onto the S1 somatotopic organization. We then found that its spatial characteristics were linked to the individuals' adaptive functioning skills, as measured by the Vineland Adaptive Behavior Scales, across the whole sample. Higher functional differentiation characterized the S1 connectopies of individuals with higher daily life adaptive skills. Notably, we detected significant differences between rest and the Hariri task in the S1 connectopies, as well as their projection maps onto the rest of the brain suggesting a task-modulating effect on S1 due to emotion processing. All in all, variation of adaptive skills appears to be reflected in the brain's mesoscale neural circuitry, as shown by the S1 connectivity profile, which is also differentially modulated during rest and emotional processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374902PMC
http://dx.doi.org/10.1038/s41398-023-02559-3DOI Listing

Publication Analysis

Top Keywords

somatosensory cortex
8
emotional face-matching
8
association asd
8
rest brain
8
rest emotional
8
hariri task
8
adaptive skills
8
rest
5
fine-grained topographic
4
topographic organization
4

Similar Publications

Fragile X autosomal homolog 1 (FXR1), a member of the fragile X messenger riboprotein 1 family, has been linked to psychiatric disorders including autism and schizophrenia. Parvalbumin (PV) interneurons play critical roles in cortical processing, and have been implicated in FXR1-linked mental illnesses. Targeted deletion of FXR1 from PV interneurons in mice has been shown to alter cortical excitability and elicit schizophrenia-like behavior.

View Article and Find Full Text PDF

Extracellular matrix (ECM) is a network of macromolecules which has two forms - perineuronal nets (PNNs) and a diffuse ECM (dECM) - both influence brain development, synapse formation, neuroplasticity, CNS injury and progression of neurodegenerative diseases. ECM remodeling can influence extrasynaptic transmission, mediated by diffusion of neuroactive substances in the extracellular space (ECS). In this study we analyzed how disrupted PNNs and dECM influence brain diffusibility.

View Article and Find Full Text PDF

Functional connectivity within sensorimotor cortical and striatal regions is regulated by sepsis in a sex-dependent manner.

Neuroimage

January 2025

Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA. Electronic address:

Sepsis is a state of systemic immune dysregulation and organ failure that is frequently associated with severe brain disability. Epidemiological studies have indicated that younger females have better prognosis and clinical outcomes relative to males, though the sex-dependent response of the brain to sepsis during post-sepsis recovery remains largely uncharacterized. Using a modified polymicrobial intra-abdominal murine model of surgical sepsis, we characterized the acute effects of intra-abdominal sepsis on peripheral inflammation, brain inflammation and brain functional connectivity in young adult mice of both sexes.

View Article and Find Full Text PDF

Fibromyalgia is a chronic pain condition contributing to significant disability worldwide. Neuroimaging studies identify abnormal effective connectivity between cortical areas responsible for descending pain modulation (pregenual anterior cingulate cortex, pgACC) and sensory components of pain experience (primary somatosensory cortex, S1). Neurofeedback, a brain-computer interface technique, can normalise dysfunctional brain activity, thereby improving pain and function.

View Article and Find Full Text PDF

Cortical layer 5 (L5) intratelencephalic (IT) and pyramidal tract (PT) neurons are embedded in distinct information processing pathways. Their morphology, connectivity, electrophysiological properties, and role in behavior have been extensively analyzed. However, the molecular composition of their synapses remains largely uncharacterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!