Studies evaluating the crude protein (CP) supplementation strategies across the year for grazing cattle and its association with the enzymes involved in the urea cycle and muscle and mammary gland developments are scarce. Thus, we aimed to evaluate the effect of supplementation with different levels of CP on the expression of genes involved in the urea cycle and muscle and mammary gland development of Holstein × Gyr crossbreed heifers grazing intensively managed Brachiaria decumbens throughout the year. Thirty-eight heifers with average initial BW of 172.5 ± 11.15 kg (mean ± SE) and 8.2 ± 0.54 mo of age were randomly assigned to 1 of 4 treatments: 3 protein supplements (SUP) fed at 5g/kg of body weight, plus a control group (CON, non-supplemented animals). The supplement CP levels evaluated were: 12, 24, and 36%. The study was divided into 4 seasons: rainy, dry, rainy-dry transition (RDT), and dry-rainy transition (DRT). On the penultimate day of each season, ultrasound images of the carcass and mammary gland were taken. Five animals from each treatment were randomly chosen on the last day of each season, and liver and muscle tissue biopsies were performed. The target genes were the mammalian target of rapamycin (mTOR) and adenosine monophosphate-activated protein kinase (AMPK) in the muscle samples. Carbamoyl phosphate synthetase (CPS), ornithine transcarbamylase (OTC), argininosuccinate synthetase (ASS), arginosuccinate lyase (ASL), and arginase (ARG) were evaluated in the liver samples. Data were analyzed using PROC GLIMMIX of the SAS with repeated measures. We observed a greater rib eye area (cm) and fat thickness (mm) in SUP animals than in non-supplemented animals. However, we did not observe differences among SUP levels for both variables. No effects of supplementation were detected on mammary gland development. Nevertheless, seasonal effects were observed, where the RDT and dry season had the most and least accumulated fat in the mammary gland. In muscle, we observed greater expression of AMPK in non-supplemented animals than SUP animals. On the other hand, no differences were observed in gene expression between SUP and non-supplemented animals and among SUP animals for mTOR. Season affected both AMPK and mTOR; heifers had a greater AMPK gene expression on rainy than RDT. For mTOR, we observed greater gene expression in RDT and DRT than in rainy. No differences were observed among RDT, dry, and DRT, and between dry and rainy seasons for mTOR. We observed greater CPS, ASL, and ARG gene expression in SUP animals than in non-supplemented animals. Among SUP animals, supplement CP linearly affected CPS. In conclusion, the supplementation strategy did not affect mammary gland development and mTOR expression in muscle tissue. However, we observed a seasonal effect on mammary gland development and AMPK and mTOR expression. The CP supplementation increased the rib eye area and fat thickness, directly affecting AMPK expression in the muscle. Moreover, the CP supplementation increased urea cycle enzyme expression, indicating greater urea production in the liver.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2022-22969 | DOI Listing |
Tissue microenvironments are extremely complex and heterogeneous. It is challenging to study metabolic interaction between the different cell types in a tissue with the techniques that are currently available. Here we describe a multimodal imaging pipeline that allows cell type identification and nanoscale tracing of stable isotope-labeled compounds.
View Article and Find Full Text PDFAJOG Glob Rep
February 2025
Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN) (Nurwidyaningtyas), Bogor, West Java, Indonesia.
Background: Immunoglobulin A (IgA) plays a crucial role in the maturation the neonatal mucosal barrier. The accumulation of IgA antibody-secreting cells (ASCs) in the lactating mammary gland facilitates the secretion of IgA antibodies into milk, which are then passively to the suckling newborn, providing transient immune protection against gastrointestinal pathogens. Physiologically, full-term infants are unable to produce IgA, required for mucosal barrier maturation for at least 10 days after birth.
View Article and Find Full Text PDFCell Biol Int
January 2025
Microscopy and Microanalysis Center, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University (Unesp), São José do Rio Preto, SP, Brazil.
Mammary glands development is influenced by endocrine signaling, which remodels epithelial and stromal compartments. Reactive stroma phenotype is observed when stromal disturbances occur, leading to changes in extracellular matrix composition and occurrence of reactive cell types. One of the triggers of these alterations is endocrine-disrupting chemical exposure, such as bisphenol A (BPA).
View Article and Find Full Text PDFFront Nutr
January 2025
College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
Improving mammary gland epithelial cells proliferation through nutrition is an important approach for enhancing sow milk production and piglet growth. An intermediate metabolite of valine, 3-hydroxyisobutyrate (3-HIB), regulates cellular lipid metabolism. In the present study, we investigated the effects of 3-HIB on porcine mammary gland epithelial cells proliferation and lipid metabolism.
View Article and Find Full Text PDFMicroorganisms
January 2025
College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
Bovine mastitis, a prevalent disease in dairy farms, exerts a profound negative influence on both the health and productivity of dairy cattle, leading to substantial economic losses for the dairy industry. The disease is associated with different bacterial agents, primarily Gram-positive cocci (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!