Lameness in dairy cattle is a highly prevalent condition that impacts on the health and welfare of dairy cows. Prompt detection and implementation of effective treatment is important for managing lameness. However, major limitations are associated with visual assessment of lameness, which is the most commonly used method to detect lameness. The aims of this study were to investigate the use of metabolomics and machine learning to develop novel methods to detect lameness. Untargeted metabolomics using liquid chromatography-mass spectrometry (LC-MS) alongside machine learning models and a stability selection method were utilized to evaluate the predictive accuracy of differences in the metabolomics profile of first-lactation dairy cows before (during the transition period) and at the time of lameness (based on visual assessment using the 0-3 scale of the Agriculture and Horticulture Development Board). Urine samples were collected from 2 cohorts of dairy heifers and stored at -86°C before analysis using LC-MS. Cohort 1 (n = 90) cows were recruited as current first-lactation cows with weekly mobility scores recorded over a 4-mo timeframe, from which newly lame and nonlame cows were identified. Cohort 2 (n = 30) cows were recruited within 3 wk before calving, and lameness events (based on mobility score) were recorded through lactation until a minimum of 70 d in milk (DIM). All cows were matched paired by DIM ± 14 d. The median DIM at lameness identification was 187.5 and 28.5 for cohort 1 and 2, respectively. The best performing machine learning models predicted lameness at the time of lameness with an accuracy of between 81 and 82%. Using stability selection, the prediction accuracy at the time of lameness was 80 to 81%. For samples collected before and after calving, the best performing machine learning model predicted lameness with an accuracy of 71 and 75%, respectively. The findings from this study demonstrate that untargeted LC-MS profiling combined with machine learning methods can be used to predict lameness as early as before calving and before observable changes in gait in first-lactation dairy cows. The methods also provide accuracies for detecting lameness at the time of observable changes in gait of up to 82%. The findings demonstrate that these methods could provide substantial advancements in the early prediction and prevention of lameness risk. Further external validation work is required to confirm these findings are generalizable; however, this study provides the basis from which future work can be conducted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570404PMC
http://dx.doi.org/10.3168/jds.2022-23118DOI Listing

Publication Analysis

Top Keywords

machine learning
24
lameness
15
dairy cows
12
time lameness
12
lameness dairy
8
dairy cattle
8
liquid chromatography-mass
8
metabolomics machine
8
cows
8
visual assessment
8

Similar Publications

BMT: A Cross-Validated ThinPrep Pap Cervical Cytology Dataset for Machine Learning Model Training and Validation.

Sci Data

December 2024

Department of Pathology and Laboratory Medicine, Alpert Medical School, Brown University, Providence, RI, 02912, USA.

In the past several years, a few cervical Pap smear datasets have been published for use in clinical training. However, most publicly available datasets consist of pre-segmented single cell images, contain on-image annotations that must be manually edited out, or are prepared using the conventional Pap smear method. Multicellular liquid Pap image datasets are a more accurate reflection of current cervical screening techniques.

View Article and Find Full Text PDF

Background: High triglyceride (TG) affects and is affected of other hematological factors. The determination of serum fasted triglycerides concentrations, as part of a lipid profile, is crucial key point in hematological factors and significantly affect various systemic diseases. This study was carried out to assess the potential relation between the concentration of TG and hematological factors.

View Article and Find Full Text PDF

Generative Artificial Intelligence (AI), characterized by its ability to generate diverse forms of content including text, images, video and audio, has revolutionized many fields, including medical education. Generative AI leverages machine learning to create diverse content, enabling personalized learning, enhancing resource accessibility, and facilitating interactive case studies. This narrative review explores the integration of generative artificial intelligence (AI) into orthopedic education and training, highlighting its potential, current challenges, and future trajectory.

View Article and Find Full Text PDF

Bias in machine learning applications to address non-communicable diseases at a population-level: a scoping review.

BMC Public Health

December 2024

Upstream Lab, MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, Unity Health Toronto, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.

Background: Machine learning (ML) is increasingly used in population and public health to support epidemiological studies, surveillance, and evaluation. Our objective was to conduct a scoping review to identify studies that use ML in population health, with a focus on its use in non-communicable diseases (NCDs). We also examine potential algorithmic biases in model design, training, and implementation, as well as efforts to mitigate these biases.

View Article and Find Full Text PDF

Development and Validation of a Nomogram Based on Multiparametric MRI for Predicting Lymph Node Metastasis in Endometrial Cancer: A Retrospective Cohort Study.

Acad Radiol

December 2024

Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China (Y.T., Y.W., Y.Y., X.Q., Y.H., J.L.); Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, Guangxi Zhuang Autonomous Region, PR China (J.L.). Electronic address:

Rationale And Objectives: To develop a radiomics nomogram based on clinical and magnetic resonance features to predict lymph node metastasis (LNM) in endometrial cancer (EC).

Materials And Methods: We retrospectively collected 308 patients with endometrial cancer (EC) from two centers. These patients were divided into a training set (n=155), a test set (n=67), and an external validation set (n=86).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!