Assuming that acetic acid plays a minor role in the development of ruminal epithelium of preweaning dairy calves, the fiber supply for growing calves has been neglected. More research has been done on including starch and nonfibrous carbohydrates in solid feed for preweaning calves. Accordingly, the fiber requirement of these calves is not well known, as diet recommendations vary greatly. Hence, elucidating the effects of including fiber from long particle sizes in the diet may be essential for helping calves overcome the transition challenge during weaning. Forty-five Holstein calves were used in a randomized block design, considering sex, birth date, and weight at 28 d of age, when the supply of the total mixed ration (TMR) with the inclusion of corn silage started. Three TMR with increasing whole-plant flint corn silage content (0, 10, or 20% on a dry matter basis) were compared: 0CS, 10CS, or 20CS, respectively. During the first 28 d of life, the calves were managed homogeneously and were fed 6 L/d of whole milk, a commercial calf starter pelleted, and water ad libitum. Next, the solid diet was changed to the respective solid feed treatment. Calves were gradually weaned from 52 to 56 d of age but were evaluated for an additional 14 d postweaning. Feed intake was measured daily, while body weight and metabolic indicators of intermediate metabolism were evaluated weekly. Ruminal fluid was collected at 6, 8, and 10 wk of age. Behavioral analysis was conducted on wk 7 (preweaning) and 10 (postweaning). There was a quadratic effect for dry matter intake from wk 7 to 10, with higher intake for the 10CS diet than the 0CS and 20CS diets. Consequently, the 10CS diet also promoted greater average daily gain at wk 8 and 9 compared with the 0CS and 20CS diets. However, the final body weight was not affected by the different solid diets. Silage inclusion in calves' diet positively affected time spent ruminating and chewing pre- and postweaning. Including 10% of whole-plant flint corn silage in the diets of young dairy calves is a strategy to increase total solid intake and decrease acidosis risk by increasing pH and ruminating activity around weaning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2023-23494 | DOI Listing |
Animals (Basel)
December 2024
Agriculture Victoria Research, Department of Energy, Environment and Climate Action, Ellinbank, Victoria 3821, Australia.
This experiment determined the effects of two different starch sources when offered twice a day to cows during the early postpartum period (1 to 23 d postpartum, treatment period) on dry matter intake (DMI), feeding behavior, and milk production. The subsequent effects on milk production in the carryover period (24 to 72 d) where cows received a common diet (grazed perennial ryegrass pasture plus concentrate supplements) were also measured. Thirty-two multiparous dairy cows were offered concentrate feed (8 kg DM/d) containing 5 kg DM of crushed wheat grain or ground corn grain (7 h in vitro starch digestibility of 65.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias, n 11, Piracicaba, SP, 1341-900, Brazil.
The inclusion of forage sources in calf diets is often discussed, and the main point debated is whether the inclusion level, particle size, source, and how forage is offered may impact gut fill and reduce body weight gain, as well as impact gastrointestinal tract development. This study aimed to determine the effects of feeding forage sources with different qualities on rumen fermentation, gut fill, and development of the gastrointestinal tract of dairy calves. Forty-eight Holstein dairy calves were blocked according to sex and body weight (BW) at 28 days of life and randomly assigned to 1 of 4 dietary treatments.
View Article and Find Full Text PDFAMB Express
December 2024
Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, El Cerrillo Piedras Blancas, 50295, Toluca, Estado de México, Mexico.
Reducing greenhouse gas (GHG) emissions from livestock is a crucial step towards mitigating the impact of climate change and improving environmental sustainability in agriculture. This study aimed to evaluate the effects of Yucca schidigera extract, chitosan, and chitosan nanoparticles as feed additives on in vitro GHG emissions and fermentation profiles in ruminal fluid from bulls. Total gas, CH, CO, and HS emissions (up to 48 h), rumen fermentation profiles, and CH conversion efficiency were measured using standard protocols.
View Article and Find Full Text PDFTransl Anim Sci
December 2024
Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.
We conducted two experiments to evaluate the effect of direct-fed microbials () on fermentation parameters and nutrient degradability with two different approaches using rumen fluid from lactating Holstein dairy cows. In Exp. 1, three doses of a DFM containing and () at doses of 3.
View Article and Find Full Text PDFJ Dairy Sci
December 2024
Department of Animal and Veterinary Sciences, AU Viborg - Research Centre Foulum, Aarhus University, Blichers Allé 20, 8830 DK-Tjele, Denmark.
The objective of this study was to investigate the effect of combining different doses of 3-nitrooxypropanol (3-NOP) with varying forage composition on gas emission and production performance of dairy cows. Seventy-two lactating Danish Holstein cows (36 primiparous and 36 multiparous) were enrolled in a continuous randomized block design with an initial 2-week covariate period followed by application of treatments for 12 consecutive weeks. Initial DMI and ECM yield were 23.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!