Effects of acidic non-steroidal anti-inflammatory drugs on human cytochrome P450 4A11 activity: Roles of carboxylic acid and a sulfur atom in potent inhibition by sulindac sulfide.

Chem Biol Interact

Department of Pharmacy, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, 390-8621, Japan; Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan. Electronic address:

Published: September 2023

Cytochrome P450 4A11 (CYP4A11) has many endogenous and exogenous compounds containing a carboxyl group in their structure as substrates. If drugs with this characteristic potently attenuate the catalytic function of CYP4A11, drug-drug interactions may occur. Acidic non-steroidal anti-inflammatory drugs (NSAIDs) possess a carboxylic acid in their structure. However, it remains unclear whether these drugs inhibit CYP4A11 activity. The present study examined the inhibitory effects of acidic NSAIDs on CYP4A11 activity using human liver microsomes (HLMs) and recombinant CYP4A11. Sulindac sulfide, ibuprofen, and flurbiprofen effectively decreased the luciferin-4A O-demethylase activity of HLMs and recombinant CYP4A11 (inhibition rates of 30-96% at an inhibitor concentration of 100 μM), while salicylic acid, aspirin, diclofenac, mefenamic acid, indomethacin, etodolac, ketoprofen, loxoprofen, S-naproxen, pranoprofen, zaltoprofen, and oxaprozin exhibited weaker inhibitory activity (inhibition rates up to 23%). Among the drugs tested, sulindac sulfide was the most potent inhibitor of CYP4A11 activity. A kinetic analysis of the inhibition of CYP4A11 by sulindac sulfide revealed mixed-type inhibition for HLMs (K = 3.38 μM) and recombinant CYP4A11 (K = 4.19 μM). Sulindac sulfide is a pharmacologically active metabolite of sulindac (sulfoxide form), which is also oxidized to sulindac sulfone. To elucidate the role of a sulfur atom of sulindac sulfide in the inhibition of CYP4A11, the inhibitory effects of sulindac sulfide and its oxidized forms on CYP4A11 activity were examined. The potency of inhibition against HLMs was greater in the order of sulindac sulfide, sulindac, and sulindac sulfone; IC values were 6.16, 52.7, and 71.6 μM, respectively. The present results indicate that sulindac sulfide is a potent inhibitor of CYP4A11. These results and the molecular modeling of CYP4A11 with sulindac sulfide and its oxidized forms suggest that a sulfur atom of sulindac sulfide as well as its carboxylic acid play important roles in the inhibition of CYP4A11.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2023.110644DOI Listing

Publication Analysis

Top Keywords

sulindac sulfide
44
cyp4a11 activity
16
sulindac
15
cyp4a11
14
carboxylic acid
12
sulfur atom
12
recombinant cyp4a11
12
cyp4a11 sulindac
12
inhibition cyp4a11
12
sulfide
11

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!