Objective: The possibility to counteract the development of obesity in humans by recruiting brown or brite/beige adipose tissue (and thus UCP1) has attracted much attention. Here we examine if a diet that can activate diet-induced thermogenesis can exploit pre-enhanced amounts of UCP1 to counteract the development of diet-induced obesity.
Methods: To investigate the anti-obesity significance of highly augmented amounts of UCP1 for control of body energy reserves, we physiologically increased total UCP1 amounts by recruitment of brown and brite/beige tissues in mice. We then examined the influence of the augmented UCP1 levels on metabolic parameters when the mice were exposed to a high-fat/high-sucrose diet under thermoneutral conditions.
Results: The total UCP1 levels achieved were about 50-fold higher in recruited than in non-recruited mice. Contrary to underlying expectations, in the mice with highly recruited UCP1 and exposed to a high-fat/high-sucrose diet the thermogenic capacity of this UCP1 was completely inactivate. The mice even transiently (in an adipostat-like manner) demonstrated a higher metabolic efficiency and fat gain than did non-recruited mice. This was accomplished without altering energy expenditure or food absorption efficiency. The metabolic efficiency here was indistinguishable from that of mice totally devoid of UCP1.
Conclusions: Although UCP1 protein may be available, it is not inevitably utilized for diet-induced thermogenesis. Thus, although attempts to recruit UCP1 in humans may become successful as such, it is only if constant activation of the UCP1 is also achieved that amelioration of obesity development could be attained.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10432997 | PMC |
http://dx.doi.org/10.1016/j.molmet.2023.101782 | DOI Listing |
Mol Cell Endocrinol
January 2025
Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary. Electronic address:
Brown and beige adipocytes express uncoupling protein-1 (UCP1), which is located in the inner mitochondrial membrane and facilitates the dissipation of excess energy as heat. The activation of thermogenic adipocytes is a potential therapeutic target for treating type 2 diabetes mellitus, obesity, and related co-morbidities. Therefore, identifying novel approaches to stimulate the function of these adipocytes is crucial for advancing therapeutic strategies.
View Article and Find Full Text PDFLife Metab
December 2024
Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
J Therm Biol
January 2025
China Institute of Sport Science, Beijing, 100061, China. Electronic address:
Objective: This study aimed to evaluate the effects of different cold acclimation strategies on exercise performance in male mice exposed to low-temperature environments.
Methods: Male mice were subjected to five distinct acclimation regimens over 8 weeks: immersion at 10 °C (10 °CI) or 20 °C (20 °CI), swimming at 10 °C (10 °CS), 20 °C (20 °CS), or 34 °C (34 °CS). During the first 2 weeks, the acclimation time progressively decreased from 30 min to 3 min per day, and the water temperatures were lowered from 34 °C to the target levels, followed by 6 weeks of consistent exposure.
Life (Basel)
December 2024
Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea.
The present study explored the possible antiobesogenic and osteoprotective properties of the gut metabolite ginsenoside CK to clarify its influence on lipid and atherosclerosis pathways, thereby validating previously published hypotheses. These hypotheses were validated by harvesting and cultivating 3T3-L1 and MC3T3-E1 in adipogenic and osteogenic media with varying concentrations of CK. We assessed the differentiation of adipocytes and osteoblasts in these cell lines by applying the most effective doses of CK that we initially selected.
View Article and Find Full Text PDFCommun Biol
January 2025
National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China.
Wild boars inhabit diverse climates, including frigid regions like Siberia, but their migration history and cold adaptation mechanisms into high latitudes remain poorly understood. We constructed the most comprehensive wild boar whole-genome variant dataset to date, comprising 124 samples from tropical to frigid zones, among which 47 Russian, 8 South Chinese and 3 Vietnamese wild boars were newly supplemented. We also gathered 75 high-quality RNA-seq datasets from 10 tissues of 6 wild boars from Russia and 6 from southern China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!