Intestinal epithelial cell differentiation is a highly controlled and orderly process occurring in the crypt so that cells migrating out to cover the villi are already fully functional. Absorptive cell precursors, which originate from the stem cell population located in the lower third of the crypt, are subject to several cycles of amplification in the transit amplifying (TA) zone, before reaching the terminal differentiation compartment located in the upper third. There is a large body of evidence that absorptive cell differentiation is halted in the TA zone through various epigenetic, transcriptional and intracellular signalling events or mechanisms allowing the transient expansion of this cell population but how these mechanisms are themself regulated remains obscure. One clue can be found in the epithelial cell-matrix microenvironment located all along the crypt-villus axis. Indeed, a previous study from our group revealed that α5-subunit containing laminins such as lamimin-511 and 512 inhibit early stages of differentiation in Caco-2/15 cells. Among potential receptors for laminin 511/512 is the integrin α7β1, which has previously been reported to be expressed in the human intestinal crypts and in early stages of Caco-2/15 cell differentiation. In this study, the effects of knocking down ITGA7 in Caco-2/15 cells were studied using shRNA and CRISPR/Cas9 strategies. Abolition of the α7 integrin subunit resulted in a significant increase in the level of differentiation and polarization markers as well as the morphological features of intestinal cells. Activities of focal adhesion kinase and Src kinase were both reduced in α7-knockdown cells while the three major intestinal pro-differentiation factors CDX2, HNFα1 and HNF4α were overexpressed. Two epigenetic events associated with intestinal differentiation, the reduction of tri-methylated lysine 27 on histone H3 and the increase of acetylation of histone H4 were also observed in α7-knockdown cells. On the other hand, the ablation of α7 had no effect on cell proliferation. In conclusion, these data indicate that integrin α7β1 acts as a major repressor of absorptive cell terminal differentiation in the Caco-2/15 cell model and suggest that the laminin-α7β1 integrin interaction occurring in the transit amplifying zone of the adult intestine is involved in the transient halting of absorptive cell terminal differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2023.113723 | DOI Listing |
PLoS One
January 2025
Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
Aquatic toxicology, as a result of industrial and agrieqcultural effluences, has become a global concern impacting not only the well-being of aquatic organisms but human health as well. The current study evaluated the impact of four toxic trace elements (TTEs) Cadmium (Cd), copper (Cu), lead (Pb), and nickel (Ni) in three organs (liver, gills, and muscles) of five fish species viz, Rita rita, Sperata sarwari, Wallago attu, Mastacembelus armatus, and Cirrhinus mrigala collected from right and left banks of Punjnad headworks during winter, spring, and summer. We investigated the accumulation (mg/kg) of these TTEs in fish in addition to the human health risk assessment.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
School of Food Science and Engineering, Hainan University, Haikou, People's Republic of China.
Background: This study aimed to elucidate the transport mechanism of lycopene-loaded nanomicelles to improve intestinal absorption of lycopene. The interactive mechanism between lycopene and nanomicelles was investigated through isothermal titration calorimetry (ITC). The cytotoxicity, cellular uptake, endocytosis, and intracellular transport pathways of lycopene-loaded nanomicelles were investigated using the Caco-2 cell model.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute for Superconducting & Electronic Materials (ISEM), Faculty of Engineering and Information Sciences (EIS), University of Wollongong, Wollongong, NSW, 2500, Australia.
Rechargeable batteries are central to modern energy storage systems, from portable electronics to electric vehicles. The cathode material, a critical component, largely dictates a battery's energy density, capacity, and overall performance. This review focuses on the application of operando X-ray absorption spectroscopy (XAS) to study cathode materials in Li-ion, Na-ion, Li-S, and Na-S batteries.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
USTC: University of Science and Technology of China, School of Chemistry and Materials Science, No.96, JinZhai Road, Baohe District, 230026, Hefei, CHINA.
Undesirable dendrite growth and side reactions at the electrical double layer (EDL) of Zn/electrolyte interface are critical challenges limiting the performance of aqueous zinc ion batteries. Through density functional theory calculations, we demonstrate that grafting large π-conjugated molecules (e.g.
View Article and Find Full Text PDFDev Dyn
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
Background: Endocytosis of enamel matrix proteins (EMPs) by ameloblasts is a key process in the mineralization of enamel during the maturation stage of amelogenesis. However, the relevant receptor mediating endocytosis of EMPs is still unclear. The aim of this study was to explore potential endocytic receptors involved in this process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!