Antisaccade and memory-guided saccade in individuals at ultra-high-risk for bipolar disorder.

J Affect Disord

Department of Neurosciences, Institute of Health Sciences, Dokuz Eylül University, İzmir, Türkiye; Department of Neurology, Faculty of Medicine, Dokuz Eylül University, Izmir, Türkiye.

Published: October 2023

Background: Ultra-high-risk for bipolar disorder (UHR-BD) is an important paradigm to investigate the potential early-stage biomarkers of bipolar disorder, including eye-tracking abnormalities and cognitive functions. Antisaccade (AS) described as looking in the opposite direction of the target, and memory-guided saccade (MGS), identified as maintaining fixation, and remembering the location of the target, were used in this study. The aim of this study was to evaluate the differences in saccadic eye movements between UHR-BD and healthy controls (HCs) via AS-MGS.

Methods: The study included 28 UHR-BD and 29 HCs. Participants were selected using a structured clinical interview for prodromal symptoms of BD. AS-MGS were measured with parameters like uncorrected errors, anticipatory saccades, and latency. Eye movements were recorded with the EyeLink 1000-Plus eye-tracker.

Results: In the AS, the number of correct saccades was significantly decreased in UHR-BD (p = 0.020). Anticipatory (p = 0.009) and express saccades (p = 0.040) were increased in UHR-BD. In the MGS paradigm, the correct saccades were reduced in UHR-BD (p = 0.031). In addition, anticipatory (p = 0.004) and express saccades (p = 0.012) were significantly increased in cue-screen in UHR-BD.

Conclusions: To our knowledge, this is the first study to evaluate cognitive functions with eye movements in individuals at UHR-BD. The current findings showed that eye movement functions, particularly in saccadic parameters related to inhibition and spatial perception, may be affected in the UHR-BD group. Therefore, assessment of oculomotor functions may provide observation of clinical and cognitive functions in the early-stage of bipolar disorder. However, further research is needed because the potential effects of medication may affect saccadic results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jad.2023.07.109DOI Listing

Publication Analysis

Top Keywords

bipolar disorder
16
cognitive functions
12
eye movements
12
memory-guided saccade
8
ultra-high-risk bipolar
8
uhr-bd
8
study evaluate
8
correct saccades
8
express saccades
8
functions
5

Similar Publications

Mental disorders are complex illnesses with multifactorial etiologies involving genetic and environmental components. This review focuses on cellular models derived from the olfactory epithelium as a promising tool to study the molecular mechanisms of some neuropsychiatric diseases. The authors consider cell lines allowing the identification of potential biomarkers and pathogenetic mechanisms of schizophrenia, bipolar disorder, and Alzheimer's disease.

View Article and Find Full Text PDF

Nose-to-brain delivery of lithium via a sprayable in situ-forming hydrogel composed of chelating starch nanoparticles.

J Control Release

December 2024

Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada. Electronic address:

While bipolar disorder patients can benefit from lithium therapy, high levels of lithium in the serum can induce undesirable systemic side effects. Intranasal (IN) lithium delivery offers a potential solution to this challenge given its potential to facilitate improved lithium transport to brain when delivered to the olfactory mucosa. Herein, a sprayable, in situ forming nanoparticle network hydrogel (NNH) based on Schiff base interactions between chelator-functionalized oxidized starch nanoparticles (SNPs) and carboxymethyl chitosan (CMCh) is reported that can be deployed within the nasal cavity to release ultra-small penetrative SNPs over time.

View Article and Find Full Text PDF

Schizophrenia (SCZ), bipolar (BD) and major depression disorder (MDD) are severe psychiatric disorders that are challenging to treat, often leading to treatment resistance (TR). It is crucial to develop effective methods to identify and treat patients at risk of TR at an early stage in a personalized manner, considering their biological basis, their clinical and psychosocial characteristics. Effective translation of theoretical knowledge into clinical practice is essential for achieving this goal.

View Article and Find Full Text PDF

Enhancing Transcriptomic Insights into Neurological Disorders Through the Comparative Analysis of Shapley Values.

Curr Issues Mol Biol

November 2024

Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain.

Neurological disorders such as Autism Spectrum Disorder (ASD), Schizophrenia (SCH), Bipolar Disorder (BD), and Major Depressive Disorder (MDD) affect millions of people worldwide, yet their molecular mechanisms remain poorly understood. This study describes the application of the Comparative Analysis of Shapley values (CASh) to transcriptomic data from nine datasets associated with these complex disorders, demonstrating its effectiveness in identifying differentially expressed genes (DEGs). CASh, which combines Game Theory with Bootstrap resampling, offers a robust alternative to traditional statistical methods by assessing the contribution of each gene in the broader context of the complete dataset.

View Article and Find Full Text PDF

Developing a Sleep Algxorithm to Support a Digital Medicine System: Noninterventional, Observational Sleep Study.

JMIR Ment Health

December 2024

Otsuka Pharmaceutical Development & Commercialization, Inc, 508 Carnegie Center Drive, Princeton, NJ, 08540, United States, 1 609 535 9035.

Background: Sleep-wake patterns are important behavioral biomarkers for patients with serious mental illness (SMI), providing insight into their well-being. The gold standard for monitoring sleep is polysomnography (PSG), which requires a sleep lab facility; however, advances in wearable sensor technology allow for real-world sleep-wake monitoring.

Objective: The goal of this study was to develop a PSG-validated sleep algorithm using accelerometer (ACC) and electrocardiogram (ECG) data from a wearable patch to accurately quantify sleep in a real-world setting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!