Vulnerability of wells in unconfined and confined aquifers to modern contamination from flood events.

Sci Total Environ

Department of Forestry and Environmental Resources, North Carolina State University, 2800 Faucette Dr, Raleigh, NC 27695, USA.

Published: November 2023

Groundwater is a primary potable water supply for coastal North Carolina (NC), but the increased intensity of extreme rainfall events and floods may exacerbate surface and subsurface processes that contribute anthropogenic chemicals to wells in the major confined aquifers of this region. We evaluated groundwater for organic chemicals of emerging concern (CEC) and the presence of tritium using flooded and not-flooded wells in the NC Department of Environmental Quality well monitoring network across the NC Coastal Plain. Flooded wells experienced standing water around the well casing at least once during the study period. Tritium concentrations, which indicate modern water presence (water recharged after 1953), were significantly greater in groundwater from flooded wells than not-flooded wells. In confined aquifers, modern water was detected at greater depths in flooded wells (206 m) than not-flooded wells (100 m). Suspect-screening high resolution mass spectrometry (HRMS) analysis of 150 groundwater samples yielded a total of 382 unique organic chemicals. Each groundwater sample contained, on average, 19 tentatively identified chemicals from the NIST 20 mass spectral database (M) and 9 USEPA ToxCast chemicals. The number of tentatively-identified chemicals per sample was not significantly different among aquifers demonstrating the pervasive presence of the detected CECs in unconfined and confined aquifers. The presence of modern water in groundwater from flooded wells coincided with higher detection frequencies of certain organic contaminant classes, particularly pharmaceuticals, food additives, and regulated aromatic hydrocarbons. These results indicate that wells in both unconfined and confined aquifers are susceptible to modern water contamination during flood events; this finding has critical public health implications for coastal communities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.165729DOI Listing

Publication Analysis

Top Keywords

confined aquifers
20
flooded wells
16
modern water
16
unconfined confined
12
not-flooded wells
12
wells
9
wells unconfined
8
aquifers modern
8
contamination flood
8
flood events
8

Similar Publications

Study on numerical simulation of groundwater flow field and slope stability in multi-aquifer open pit mine.

Sci Rep

December 2024

Liaoning Institute of Technology and Equipment for Mineral Resources Development and Utilisation in Higher Educational Institutions, Liaoning Technical University, Fuxin, 123000, Liaoning, China.

Water is one of the most important influences on slope stability in open pit mines. In order to solve the problem of slope stability analysis in multi-aquifer open pit mines, the open pit mine in Block I of Thar Coalfield in Pakistan with multiple aquifers was taken as the research background. The groundwater flow field at different excavation phases was analyzed by numerical simulation method.

View Article and Find Full Text PDF

To explore the changes in groundwater hydrochemistry and its source influence in the low water level period of the southern oasis area of Gaochang District, Turpan City before and after the management of groundwater overexploitation, based on 12 groups of water samples in 2016 (three groups of unconfined water, nine groups of confined water) and 18 groups of water samples in 2023 (five groups of unconfined water, thirteen groups of confined water), mathematical statistics, hydrochemical diagraph, hydrogen and oxygen isotope means, and an absolute principle component-multiple linear regression (APCS-MLR) model were used to analyze the changes and sources of groundwater hydrochemistry. The results showed that due to the dynamic conditions of groundwater, the dominant cation changed from Na to Ca, and the anion changed from HCO to SO. The dominant cation of confined water changed from Ca to Na, and the dominant anion remained unchanged as SO.

View Article and Find Full Text PDF

Polymer solution injection has emerged as a promising method for the remediation of NAPL (non-aqueous phase liquids)-contaminated aquifers. This technique enhances recovery efficiency by modifying viscous forces, stabilizing the displacement front, and minimizing channeling effects. However, there remains a significant gap in understanding the behavior of polymer solutions, particularly those with different molecular weights (MW), for mobilizing DNAPL (dense non-aqueous phase liquids) trapped in heterogeneous aquifers, especially within low-permeability layers.

View Article and Find Full Text PDF

Perfluoroalkyl substances (PFASs) in groundwater and surface water in the Turin metropolitan area (Italy): An attempt to unravel potential point sources and compliance with environmental/drinking water quality standards.

Sci Total Environ

December 2024

Agenzia Regionale per la Protezione dell'Ambiente del Piemonte (ARPA Piemonte), Dipartimento Territoriale di Torino (Piemonte Nord Ovest), Via Pio VII 9, 10135 Torino, Italy.

The study investigated the contribution of five potential point source categories on the occurrence of 19 highly hazardous perfluoroalkyl substances (PFASs) in freshwater from the Turin metropolitan area (Italy) and assessed the quality of groundwater and surface water in compliance with European and Italian guidelines. PFASs were revealed in 29 and 24 % of the investigated shallow (unconfined aquifers) and deep (semi- and confined aquifers) wells with a total concentration, as a sum (ΣPFASs), of 0.01-0.

View Article and Find Full Text PDF

The Snowball Earth hypothesis predicts global ice cover; however, previous descriptions of Cryogenian (720-635 Ma) glacial deposits are limited to continental margins and shallow marine basins. The Tavakaiv (Tava) sandstone injectites and ridges in Colorado, USA, preserve a rare terrestrial record of Cryogenian low-latitude glaciation. Injectites, ridges, and chemically weathered crystalline rock display features characteristic of fluidization and pervasive deformation in a subglacial environment due to glacial loading, fluid overpressure, and repeated sand injection during meltwater events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!