A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of foods and food components on the in vitro bioaccessibility of total arsenic and arsenic species from Hizikia fusiforme seaweed. | LitMetric

Effects of foods and food components on the in vitro bioaccessibility of total arsenic and arsenic species from Hizikia fusiforme seaweed.

Sci Total Environ

Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China. Electronic address:

Published: November 2023

Seaweed is an important food source, especially in many Asian countries, because of its high nutritional value; however, increasing arsenic (As) accumulation may pose serious hazards to human health. The influence of food components on As bioaccessibility and transformation in the high As-containing seaweed Hizikia fusiforme was determined using an in vitro gastrointestinal digestion method. The results showed that co-digestion with several daily foods (such as celery, broccoli, onion, green chili, tomato) produced a higher As bioaccessibility (approximately 6-11 % increase) compared with that of seaweed alone. Vegetables such as fennel (Foeniculum valgare Mill.), celery (Apium grareolens L.), blanched garlic leaves (Allium sativum L.), scallions (Allium fistulosum L.), ginger (Zingiber officinale Rosc.), and green pepper (Capsicum frutescens L. vat. grussum Bailey) decreased bioaccessible inorganic As (18-35 %) in both the gastric and small intestinal phases. Meanwhile, the process of reducing As(V) to As(III) also occurred during co-digestion with some food matrices. Egg white and other animal proteins were the most effective reducing agents, transforming >70 % As(V) into As(III) in the solution system. These results may have important implications for health risk assessment via co-consumption. The present study provides the first evidence showing that the co-consumption of some vegetables and proteins leads to a higher toxicity of inorganic arsenic-containing food. In addition, the positive and negative effects of co-digestion on the bioaccessibility of essential metals (iron, manganese) compared to single digestion were evaluated in this study.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.165775DOI Listing

Publication Analysis

Top Keywords

food components
8
hizikia fusiforme
8
asv asiii
8
food
5
effects foods
4
foods food
4
components vitro
4
bioaccessibility
4
vitro bioaccessibility
4
bioaccessibility total
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!