. UNet-based deep-learning (DL) architectures are promising dose engines for traditional linear accelerator (Linac) models. Current UNet-based engines, however, were designed differently with various strategies, making it challenging to fairly compare the results from different studies. The objective of this study is to thoroughly evaluate the performance of UNet-based models on magnetic-resonance (MR)-Linac-based intensity-modulated radiation therapy (IMRT) dose calculations.. The UNet-based models, including the standard-UNet, cascaded-UNet, dense-dilated-UNet, residual-UNet, HD-UNet, and attention-aware-UNet, were implemented. The model input is patient CT and IMRT field dose in water, and the output is patient dose calculated by DL model. The reference dose was calculated by the Monaco Monte Carlo module. Twenty training and ten test cases of prostate patients were included. The accuracy of the DL-calculated doses was measured using gamma analysis, and the calculation efficiency was evaluated by inference time.. All the studied models effectively corrected low-accuracy doses in water to high-accuracy patient doses in a magnetic field. The gamma passing rates between reference and DL-calculated doses were over 86% (1%/1 mm), 98% (2%/2 mm), and 99% (3%/3 mm) for all the models. The inference times ranged from 0.03 (graphics processing unit) to 7.5 (central processing unit) seconds. Each model demonstrated different strengths in calculation accuracy and efficiency; Res-UNet achieved the highest accuracy, HD-UNet offered high accuracy with the fewest parameters but the longest inference, dense-dilated-UNet was consistently accurate regardless of model levels, standard-UNet had the shortest inference but relatively lower accuracy, and the others showed average performance. Therefore, the best-performing model would depend on the specific clinical needs and available computational resources.. The feasibility of using common UNet-based models for MR-Linac-based dose calculations has been explored in this study. By using the same model input type, patient training data, and computing environment, a fair assessment of the models' performance was present.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/aceb2c | DOI Listing |
Sci Rep
January 2025
Department of Electronics, Information and Communication Engineering, Kangwon National University, Samcheok, Republic of Korea.
Detecting brain tumours (BT) early improves treatment possibilities and increases patient survival rates. Magnetic resonance imaging (MRI) scanning offers more comprehensive information, such as better contrast and clarity, than any alternative scanning process. Manually separating BTs from several MRI images gathered in medical practice for cancer analysis is challenging and time-consuming.
View Article and Find Full Text PDFSci Rep
December 2024
GIN, IMN-UMR5293, CEA, CNRS, Université de Bordeaux, Bordeaux, France.
Cerebral microbleeds (CMB) represent a feature of cerebral small vessel disease (cSVD), a prominent vascular contributor to age-related cognitive decline, dementia, and stroke. They are visible as spherical hypointense signals on T2*- or susceptibility-weighted magnetic resonance imaging (MRI) sequences. An increasing number of automated CMB detection methods being proposed are based on supervised deep learning (DL).
View Article and Find Full Text PDFCan J Cardiol
December 2024
Stephenson Cardiac Imaging Centre, Calgary, Alberta, Canada; Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Science, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada. Electronic address:
PLoS One
December 2024
Department of Geology and Geography, West Virginia University, Morgantown, WV, United States of America.
J Appl Clin Med Phys
November 2024
Department of Radiotherapy, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China.
Background: Lung cancer poses a significant global health challenge. Adaptive radiotherapy (ART) addresses uncertainties due to lung tumor dynamics. We aimed to investigate a comprehensively and systematically validated offline ART regimen with high clinical feasibility for lung cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!