The gut microbiome plays an important role in quail feed efficiency, immunity, production, and even behavior. Gut microbial gene catalogs and reference genomes are important for understanding the quail gut microbiome. However, quail gut microbes are lacked sequenced genomes and functional information to date. In this study, we report the first catalog of the microbial genes and metagenome-assembled genomes (MAGs) in fecal and cecum luminal content samples from 3 quail breeds using deep metagenomic sequencing. We identified a total of 2,419,425 nonredundant genes in the quail genome catalog, and a total of 473 MAGs were reconstructed through binning analysis. At 95% average nucleotide identity, the 473 MAGs were clustered into 283 species-level genome bins (SGBs), of which 225 SGBs belonged to species without any available genomes in the current database. Based on the quail gene catalog and MAGs, we identified 142 discriminative bacterial species and 244 discriminative MAGs between Chinese yellow quails and Japanese quails. The discriminative MAGs suggested a strain-level difference in the gut microbial composition. Additionally, a total of 25 Kyoto Encyclopedia of Genes and Genomes functional terms and 88 carbohydrate-active enzymes were distinctly enriched between Chinese yellow quails and Japanese quails. Most of the different species and MAGs were significantly interrelated with the shifts in the functional capacities of the quail gut microbiome. Taken together, we constructed a quail gut microbial gene catalog and enlarged the reference of quail gut microbial genomes. The results of this study provide a powerful and invaluable resource for quail gut microbiome-related research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393819 | PMC |
http://dx.doi.org/10.1016/j.psj.2023.102931 | DOI Listing |
Poult Sci
December 2024
Animal Bioscience and Biotechnology Laboratory United States Department of Agriculture-Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA. Electronic address:
In vitro tests were conducted to characterize the host-mediated responses of chickens to Clove Essential Oil (CEO) and Oregano Essential Oil (OEO). Chicken macrophage cells (CMCs), chicken intestinal epithelial cells (IECs), quail muscle cells (QMCs), and chicken embryonic muscle cells (EMCs) were utilized in these assays. EMCs were collected from the 13-day-old embryo during egg incubation and all cell lines were seeded at 2 × 10/mL in a 24-well plate.
View Article and Find Full Text PDFPoult Sci
November 2024
Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km 3, 70010, Valenzano, BA, Italy.
Animals (Basel)
September 2024
Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-USDA, Beltsville, MD 20705, USA.
(1) Background: In a metabolomics analysis conducted to investigate the mechanisms behind the growth-promoting effects of probiotics in broilers, β-alanine was found to be significantly elevated. This led to the hypothesis that β-alanine could also contribute to growth-promoting effects in infected broilers. (2) Methods: An in vitro culture system was developed to assess β-alanine's impact on proinflammatory cytokine response in chicken macrophage cells, gut integrity in chicken intestinal epithelial cells, and muscle differentiation in quail muscle cells and primary chicken embryonic muscle cells.
View Article and Find Full Text PDFPoult Sci
September 2024
Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
Antibiotic overuse in poultry feeds has disastrous implications; consequently, long-term alternatives must be developed. As a result, the current study aims to assess the impact of Aspergillus niger filtrate (ANF) high in organic acids grown on agro-industrial residue of faba bean (AIRFB) on quail diet, as well as their influence on bird productivity, digestion, carcass yield, blood chemistry, and intestinal microbiota. A total of 240 Japanese quails (aged 7 d) were used in this study, divided equally among 5 experimental groups with 48 quails each.
View Article and Find Full Text PDFPoult Sci
August 2024
Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, MD 20705, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!